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Abstract

In this paper we propose a novel approach of computing
skeletons of robust topology for simply connected surfaces
with boundary by constructing Reeb graphs from the eigen-
functions of an anisotropic Laplace-Beltrami operator. Our
work brings together the idea of Reeb graphs and skele-
tons by incorporating a flux-based weight function into the
Laplace-Beltrami operator. Based on the intrinsic geometry
of the surface, the resulting Reeb graph is pose independent
and captures the global profile of surface geometry. Our
algorithm is very efficient and it only takes several seconds
to compute on neuroanatomical structures such as the cin-
gulate gyrus and corpus callosum. In our experiments, we
show that the Reeb graphs serve well as an approximate
skeleton with consistent topology while following the main
body of conventional skeletons quite accurately.

1. Introduction

Skeletons are important tools in studying shapes[2] as
they provide an intuitive graph representation that connects
well with high level understandings. The challenge of using
skeletons in group studies is to maintain a consistent topol-
ogy across population. In this paper, we propose a novel
approach of computing skeletons with consistent topology
on simply connected surface patches in 3D by construct-
ing a Reeb graph from the eigenfunction of an anisotropic
Laplace-Beltrami operator.

One weakness in using skeletons to represent shapes is
their sensitivity to small changes on the boundary, which
makes it difficult to compare a group of shapes belonging to
the same category but having subtle differences. As an ex-
ample, we show the skeletons of four cingulate gyri in Fig.
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1 that are computed with the method of Hamilton-Jacobi
skeletons[18]. While the skeletons are relatively clean, they
have different graph structures. To address this challenge,
various approaches were proposed to enforce a consistent
topology on the skeleton. A skeleton of fixed topology was
computed for 2D shapes by driving a snake model to the
shocks in the distance map[5]. A similar approach was also
taken in studying 3D shapes with a medial axis [20]. Prun-
ing strategies based on continuity and significance were also
developed to simplify skeletons [10, 19, 3]. The other pow-
erful approach is the M-rep that uses a generative approach
to match templates designed a priori to new shapes [11].
More recently, the idea of inverse skeletonization was used
to compute skeletons of simplified topology via the solution
of a nonlinear optimization problem [22].

Given a function defined on a surface, its Reeb graph
is intuitively a graph describing the neighboring relation of
the level sets of the function. Following Morse theory, Reeb
graphs [13] have been used as a powerful tool to analyze ge-
ometric information contained in various sources of imag-
ing data. A Reeb graph was constructed to build a smooth
surface interpolating a series of contour lines [17]. Contour
trees were constructed to store seed information for efficient
visualization of volume images [21]. The Reeb graphs were
also used to study terrain imaging data [1] and the matching
of topological information in a database of 3D shapes [6].

In this paper, we propose to use Reeb graphs to construct
a skeleton of robust topology for simply connected surface
patches with the aim of studying anatomical structures such
as the cingulate gyrus and corpus callosum. There are two
main contributions in our work. First of all, we propose to
use the spectrum of the Laplace-Beltrami operator[14, 12]
to construct the Reeb graph, which ensures the Reeb graph
is invariant to the pose of the shape. Our second contribu-
tion is the development of an anisotropic Laplace-Beltrami
operator based on a flux measure[18]. This bridges the idea
of Reeb graphs with conventional skeletons and makes the
Reeb graphs follow the main body of skeletons.

The rest of the paper is organized as follows. In sec-
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(a) (b)
Figure 2. The Reeb graph of the height function on a double torus
of genus two. (a) Level sets of the height function. (b) The Reeb
graph of the level sets.

(a) (b)

(c) (d)
Figure 3. The Reeb graphs of two different feature functions f on
a cingulate gyrus. (a) f is the z-coordinates; (b) The Reeb graph
from the function f in (a); (c) f is the y-coordinates; (d) The Reeb
graph from the function f in (c).

tion 2, we introduce the mathematical background of Reeb
graphs and its construction on triangular meshes. We de-
scribe the spectrum of the anisotropic Laplace-Beltrami op-
erator and its use of building Reeb graphs in section 3. After
that, a flux-based weight function is proposed in section 4
to define the anisotropic Laplace-Beltrami operator. Exper-
imental results are presented in section 5. Finally conclu-
sions are made in section 6.

2. Reeb Graphs

Let M denote a compact surface and a feature function
f defined on this surface. The Reeb graph of f on M is
defined as follows.

Definition 1 Let f : M → R. The Reeb graph R(f) of f
is the quotient space with its topology defined through the
equivalent relation x � y if f(x) = f(y) for ∀x, y ∈ M.

As a quotient topological space derived from M, the con-
nectivity of the elements in R(f), which are the level sets of
f , is determined by the topology, i.e., the collection of open
sets, of M. If f is a Morse function [7], which means the
critical points of f are non-degenerative, the Reeb graph
R(f) encodes the topology of M and it has g loops for a
manifold of genus g.

To compute the Reeb graph numerically, we assume the
surface M is represented as a triangular mesh M = (V, T ),
where V and T are the set of vertices and triangles, re-
spectively. The function f is then defined on each vertex
in V . We sample the level sets of f at a set of K values
ξ0 < ξ1 < · · · < ξK−1 and the set of contours as

Γ = {Γl
k, 0 ≤ k ≤ K − 1, 0 ≤ l ≤ Lk, }

where Lk denotes the number of contours at the level ξk,
and Γl

k represents the l-th contour at this level. To build
edges between contours at neighboring levels, we consider
the region

Rk,k+1 = {x ∈ M|ξk ≤ f(x) ≤ ξk+1}

and a contour Γl1
k at the level ξk and a contour Γl2

k+1 at the
level ξk+1 are connected if they belong to the same con-
nected component in Rk,k+1. This completes the construc-
tion of a Reeb graph on M as an undirected graph with the
level contours as the nodes and the edges representing the
neighboring relation of these contours.

As an example, we illustrate the construction of a Reeb
graph on a double torus shown in Fig. 2(a). The feature
function f used here is the height function. We sample ten
level sets of f and plot them as red contours on the surface.
With these contours as its nodes, the Reeb graph is shown in
Fig. 2(b), where the centroid of each contour is used to ex-
plicitly represent the nodes of the graph. Clearly this graph
has two loops and it captures the topology of the shape.

Reeb graphs can also be constructed for functions de-
fined on surfaces with boundary. For the cingulate gyrus
on a left hemispherical surface, we compute the Reeb graph
for two different choices of the feature function f . In Fig.
3(a) and (c), the function f is the z- and y- coordinates of
vertices, respectively. For these two functions, we sample
20 level sets and the resulting Reeb graphs are shown in Fig.
3(b) and (d), respectively. Since the level sets here are curve
segments, we use the middle point of each curve segment to
explicitly represent the node of the Reeb graph.

The above results demonstrate that Reeb graphs can be
constructed successfully on surface patches given a feature
function f , but they also help point out the main difficulty
in using Reeb graphs to compare shapes across population:
the selection of an appropriate feature function f . The two
feature functions used above are similar to the height func-
tion used commonly in previous work [1] and there are two



(a) (b) (c) (d)
Figure 1. The Hamilton-Jacobi skeleton of four cingulate gyri.

drawbacks of such choices. First, their Reeb graphs are pose
dependent as the coordinates will change under rotation.
Second, they are sensitive to noise on the boundary. We
can see in Fig. 3(b) and (d) that spurious branches are cre-
ated in the Reeb graphs because the boundary is jaggy as is
pretty common for manually segmented structures. We next
propose to use the eigenfunctions of an anisotropic Laplace-
Beltrami operator as the feature function, which are defined
intrinsically on the surface and robust to irregularities on the
boundary.

3. Anisotropic Laplace-Beltrami Eigenmaps

In this section, we introduce the anisotropic Laplace-
Beltrami operator on a surface patch and the computation
of its spectrum. We then propose to use the first nontrivial
eigenfunction of this operator as the feature function in the
construction of Reeb graphs.

The spectrum of the Laplace-Beltrami operator has been
used in several work in medical imaging [12, 9]. Here we
consider the more general anisotropic Laplace-Beltrami op-
erator ∇M · (w∇M) on a simply connected surface patch
M, where ∇M is the intrinsic gradient operator on M,
and w : M → R

+ is the weight defined over M. If we
set w = 1, we have the regular Laplace-Beltrami opera-
tor. Here we only require w to be positive to ensure the
operator is elliptic, so the spectrum is discrete and can be
expressed as follows. We denote the set of eigenvalues as
0 ≤ λ0 ≤ λ1 ≤ · · · and the corresponding eigenfunctions
as f0, f1, · · · such that

∇M · (w∇Mfn) = λnfn, n = 0, 1, · · · (1)

The set of eigenfunctions form orthonormal basis functions
on M and can be intuitively considered as the intrinsic
Fourier basis functions on the surface. In fact, they have
been used for denoising in brain imaging studies [12].

To compute the spectrum, we use the weak form of (1).
Taking the Neumann boundary condition, we can find the
eigenvalues as the critical points of the following energy

E(f) =

∫
M w ‖ ∇Mf ‖2 dM∫

M ‖ f ‖2 dM . (2)

For numerical implementation, we assume M = (V, T )
is a triangular mesh, where V = {Vi|i = 1, · · · , Nv} and
T = {Ti|i = 1, · · · , Nt} are the set of vertices and trian-
gles. The weight w and the eigenfunction f are assumed
to be piece-wise linear and defined on vertices, so we can
represent them as vectors of size Nv × 1. Using the method
of finite elements on triangular meshes, we can convert the
integral in (2) into the matrix form

E =
f ′Qwf

f ′Kf
(3)

where both Qw and K are matrices of size Nv × Nv . The
matrix Qw takes into account the integral

∫
M w ‖ ∇Mf ‖2

dM and its element Qw(i, j)(1 ≤ i, j ≤ Nv) is defined as:

Qw(i, j)

=




1
2

∑
Vj∈N(Vi)

∑
Tk∈N(Vi,Vj)

wk cot θi,j
k , if i = j;

− 1
2

∑
Tk∈N(Vi,Vj)

wk cot θi,j
k , if Vj ∈ N(Vi);

0, otherwise.

Here N(Vi) is the set of vertices in the 1-ring neighbor-
hood of Vi, N(Vi,Vj) is the set of triangles sharing the
edge (Vi,Vj), θi,j

k is the angle in the triangle Tk opposite
to the edge (Vi,Vj), and the weight wk on each triangle Tk

is defined as

wk =
1
3

∑
Vi∈Tk

w(Vi). (4)

The matrix K represents the integral
∫
M ‖ f ‖2 dM

and its element K(i, j)(1 ≤ i, j ≤ Nv) is defined as:

K(i, j)

=




1
12

∑
Vj∈N(Vi)

∑
Tk∈N(Vi,Vj)

Ak, if i = j;

1
12

∑
Tk∈N(Vi,Vj)

Ak, if Vj ∈ N(Vi);

0, otherwise,

where Ak is the area of the k-th triangle Tk.
Using the matrix representation in (3), we compute the

spectrum of ∇M · (w∇M) via solving a generalized matrix



(a) (b)
Figure 4. The Reeb graph of the Laplace-Beltrami eigenmap. (a)
The eigenmap. (b) The level sets of the eigenmap and the Reeb
graph.

eigenvalue problem:

Qwf = λKf. (5)

This problem can be solved with a variety of numerical lin-
ear algebra packages. In our implementation, we represent
both Qw and K as sparse matrices and use Matlab to solve
(5). Since the sum of each row in Qw equals zero, the first
eigenvalue λ0 = 0 and f0 is constant. As the first nontrivial
eigenfunction, f1 minimizes the energy E and achieves the
critical value at λ1:

λ1 =
∫
M

w ‖ ∇Mf1 ‖2 dM, (6)

s.t. ‖ f1 ‖2= 1.

Thus the eigenmap f1 provides the smoothest, non-constant
map from M to R. Using this eigenmap, we can capture the
intrinsic structure of elongated shapes such as the cingulate
gyrus and corpus callosum. The eigenmap is also invariant
under isometric transformations such as bending.

As an example, the eigenmap f1 with the isotropic
weight w = 1 for the cingulate gyrus in Fig. 3 is visual-
ized in Fig. 4(a). The level sets of this function are plotted
as red contours in Fig. 4(b), where the Reeb graph is com-
puted with each node representing the middle point of the
level sets. From the level sets, we can see the eigenmap f1

projects the surface smoothly onto R and is robust to the
jaggy boundary of the surface. Compared with the skeleton
in Fig. 1(a), we can see the Reeb graph of f1 has a sim-
ple chain structure and approximates the main component
of the skeleton very well.

4. Flux-based Weight Functions

In the cingulate gyrus example in section 3, we see that
the Laplace-Beltrami eigenmap provides a robust way of
constructing the Reeb graph and capturing the global struc-
ture of the shape. In some cases, however, the Reeb graph
built from the eigenmap of the isotropic Laplace-Beltrami
operator is insufficient as an approximation of the skele-
ton. We show such an example in Fig. 5. The Hamilton-
Jacobi skeleton of the corpus callosum is plotted in Fig.

(a)

(b)
Figure 5. The Reeb graph of a corpus callosum using the eigen-
map of the isotropic Laplace-Beltrami operator. (a) The Hamilton-
Jacobi skeleton. (b) The Reeb graph.

Figure 6. The weight function.

5(a), and the Reeb graph of the eigenmap f1 computed with
the isotropic weight w = 1, together with the level sets, is
shown in Fig. 5(b). For most parts, the Reeb graph does
a good job in approximating the skeleton, but it is also not
hard to notice that it fails to follow the bending of the genu
at the frontal end of the corpus callosum, which is well rep-
resented in the conventional skeleton in Fig. 5(a). In this
section, we design a weight function to incorporate infor-
mation in skeletons into the construction of Reeb graphs.

The weight function we choose is based on the flux mea-
sure used in the method of Hamilton-Jacobi skeleton [18]
and its extension to triangular meshes [16]. For a surface
patch M, let ∂M denote its boundary. We define a distance
transform D : M → R as:

D(x) = min
y∈∂M

d(x, y) ∀x ∈ M (7)

where d(·, ·) is the geodesic distance between two points.
Given this distance transform, the flux measure is defined
as

Flux(x) =

∫
δR

< �N,∇MD > ds∫
δR

ds
∀x ∈ M (8)



(a) α = 1.0. (b) α = 0.5. (c) α = 0.25. (d) α = 0.1.
Figure 7. The effects of the parameter α on the Reeb graph. Top row: the weight function mapped onto the surface. Bottom row: the level
sets and the Reeb graph of the anisotropic Laplace-Beltrami eigenmap.

where δR is the boundary of an infinitesimal geodesic
neighborhood of x, �N is the outward normal direction of
δR and ∇MD is the intrinsic gradient of D on M.

To numerically compute the flux measure for a triangular
mesh, we first compute the distance transform with the fast
marching algorithm on triangular meshes [8] to solve the
Eikonal equation on M:

‖∇MD‖ = 1. (9)

We then calculate the flux measure at each vertex of M as:

Flux(Vi) ≈
1

�N(Vi)

∑
Vj∈N(Vi)

<

−−→ViVj

‖ −−→ViVj ‖
,∇MD(Vj) >

(10)

where �N(Vi) is the number of vertices in the 1-ring neigh-

borhood N(Vi) of Vi, and
−−→ViVj is the vector from the vertex

Vi to Vj .
Based on the flux measure, we define the weight function

as:

w(x) = e−sign(Flux(x))|Flux(x)|α ∀x ∈ M. (11)

Following this definition, more weight is given to points on
the skeleton as the flux is more negative at these points
according to (10). Recall that the eigenmap f1 is the
smoothest projection from M to R by the minimization
of the energy in (7). As we decrease the parameter α, as
shown in Fig. 6, we put more weight on vertices close to
the skeleton, and the shape looks more like the skeleton for
the energy in (7). Thus intuitively the projection from M
to R will happen along the skeleton and the level sets of the
eigenmap should be more oriented in the direction normal
to the skeleton.

With each of the four weight functions in Fig. 6, we
compute the eigenmap of the anisotropic Laplace-Beltrami
operator ∇M · (w∇M) and use it to construct a Reeb graph
for the corpus callosum in Fig. 5. The weight functions
and the corresponding Reeb graphs are shown in Fig. 7.

As we decrease the parameter α from 1.0 to 0.1, we can
see the level sets of the eigenmap at the frontal part turn
more toward the direction pointed by the main body of the
skeleton. As a result, the Reeb graph follows the bending
of the genu better than simply using the isotropic Laplace-
Beltrami operator.

5. Experimental Results

In this section, we present experimental results to
demonstrate our algorithm. Reeb graphs are constructed on
two anatomical structures: the cingulate gyrus and corpus
callosum. We illustrate that our algorithm can be used as
an efficient and robust approach of computing skeletons of
consistent topology for these shapes.

In the first experiment, we apply our algorithm to a group
of 16 cingulate gyri as shown in Fig. 8 with the weight func-
tion w = 1. Each surface patch is extracted from triangu-
lated cortical surfaces with manual labeling, and it is usually
composed of around 2000 vertices and 4000 triangles. The
computational time is less than 2 seconds on a PC. For each
shape, we sample the eigenmap at 50 level sets and use the
middle point of each level contour as the node of the Reeb
graph. Intuitively we can see the Reeb graphs successfully
capture the global profile of these elongated surface patches.
For all the examples, the Reeb graphs have the same chain
structure.

In the second experiment, we compute Reeb graphs for
a group of 16 corpora callosa with an anisotropic Laplace-
Beltrami eigenmap by choosing the parameter α = 0.25
in (11). The surface patch of each corpus callosum is con-
structed from manually labeled binary masks with the soft-
ware triangle [15] and also composed of around 2000 ver-
tices and 4000 triangles. Because of the need of calculat-
ing the weight function, it takes around 3 seconds, which
is slightly longer than using the isotropic Laplace-Beltrami
eigenmaps, to compute the Reeb graphs on a PC. Similar
to the cingulate examples, a collection of 50 level sets are
sampled on the eigenmap of each corpus callosum. From
the results shown in Fig. 9, we can see all the Reeb graphs



Figure 8. The Reeb graph of 16 cingulate gyri constructed using the Laplace-Beltrami eigenmap.

Figure 9. The Reeb graphs of 16 corpora callosa constructed with the anisotropic Laplace-Beltrami eigenmap.

have the chain structure and successfully capture the bend-
ing of the genu.

To measure the advantage of using the anisotropic eigen-
map for analyzing the corpus callosum, we have also com-
puted the Reeb graphs with the isotropic weight w = 1
for the 16 corpora callosa. After factoring out rotation

and translation, we applied a principal component analysis
(PCA) to each of the two groups of Reeb graphs [4]. The
variances of the principal components for both the isotropic
and anisotropic Reeb graphs are plotted in Fig. 10. We can
see clearly the anisotropic Reeb graphs generate more com-
pact representations. This gives a quantitative validation



Figure 10. A comparison of the eigenvalue distribution obtained
by applying a PCA to Reeb graphs of corpora callosa constructed
with both isotropic and anisotropic Laplace-Beltrami eigenmaps.

that anatomically meaningful features are better aligned
with the use of the anisotropic Laplace-Beltrami eigenmaps.

6. Conclusions

In this paper, we propose to use the Reeb graph of an
anisotropic Laplace-Beltrami eigenmap to analyze shapes
represented as simply connected surface patches. Experi-
mental results on two neuroanatomical structures have been
presented to demonstrate the use of Reeb graphs as skele-
tons of consistent topology. Besides shape analysis, the re-
sults from our algorithm can also be used to test local mor-
phometry changes with our results by using the length of the
level sets as a width measure and the correspondences es-
tablished by the Reeb graphs. For future work, we will also
use the level sets to construct an intrinsic parameterization
for the statistical analysis of anatomical/functional features
distributed over the structure.
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