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Introduction

Neuroimaging in aging and dementia is now at a critical turning point.  The accumulation

of findings since the first functional and structural studies of dementia has produced sufficient

observational data to bring the field to the threshold of a new challenge—the identification of

incipient Alzheimer’s disease in the individual.  Results from past observational studies in

patients, and elderly normal subjects, enable us to test the prospective sensitivity and specificity

of a few discrete regional abnormalities in correctly identifying incipient AD.  Unfortunately, no

single institution can easily amass enough longitudinal population data to power the analysis of

an individuals’ likelihood of having incipient AD.  The urgency in meeting the challenge of

identifying the individual, who may not even have cognitive complaints, prior to developing

dementia symptoms is now apparent given our society’s changing demographics and the

emergence of disease modifying treatments.  A major impediment to meeting this challenge is

the development of an imaging strategy that can be universally applied and possess sufficient

power to identify an individual’s disease risk compared to an unaffected population.

Four difficulties face the development of this imaging strategy:  1) The imaging strategy

must control for anatomic variability and registration errors produced when comparing datasets

in a common co-ordinate system; 2) The imaging strategy must allow for regionally testable

hypotheses; 3) To ensure inter-center application the imaging strategy must be automated, freely

available, and not require extensive computer resources; and 4) The imaging analysis should

accommodate growth in its population data.  This study demonstrates a candidate imaging

strategy that addresses the above difficulties.
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Methods

Overview.  To determine the best registration algorithm to a common target space

(a population based Atlas designed to accommodate the elderly and demented brain previously

described)1 we test three registration approaches to our Atlas target using Automated Image

Registration (AIR):2 12 parameter affine (12p), 30 parameter 2nd order warp (2nd order), or 168

parameter 6th order warp (6th order) using 3 dimensional magnetic resonance imaging (3-D MRI)

data in 20 subjects.  Regional native space tissue counts derived from manual outlines serve as

the gold standard to determine the best overall accuracy of automated grey matter (GM), white

matter (WM), and cerebral spinal fluid (CSF) counts derived from the three registration

approaches.  Regional sub-volume probability gradients produced within the Atlas target space

from the three registration approaches are constructed by projecting the manual outlines down

the three registration matrices.  Thus, three sub-volume probabilistic Atlas (SVPA) models are

constructed for use as automated tissue counters.  The counts obtained with these three SVPA’s

are then compared to the manual “gold standard” counts to determine the best SVPA model.

Subjects.  The study group consisted of 20 individuals who presented to the University of

California Los Angeles (UCLA) Alzheimer's Disease Research Center, met all study criteria

(below), and agreed to scanning after signing an informed consent approved by the Human

Subjects Protection Committee.  This study included 6 patients with moderate Alzheimer’s

Disease (AD), and 7 patients with mild disease all diagnosed according to National Institute of

Neurological and Communicative Disorders and Stroke/Alzheimer's Disease and Related

Disorders Association (NINCDS/ADRDA) criteria for probable AD,3 4 patients with Mild

Cognitive Impairment (MCI) meeting criteria described by Petersen et al,4 and 3 normal elderly

subjects enrolled from a population of patient caregivers.   We chose a distribution of mild to
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moderate AD patients, and MCI and controls to extend the application of the SVPA across the

population spectrum seen in most clinical research settings.  Inclusion criteria included no

history of psychiatric in all subjects, or non-AD neurological illness in the AD patients, being

sufficiently proficient in English to perform clinical evaluation and age 60 or greater.  Exclusion

criteria included: all individuals with an abnormal structural imaging study of the brain, a current

or recent psychiatric illness (i.e. manic depressive states, schizophrenia); significant,

uncontrolled systemic illness (i.e. chronic renal failure, chronic liver disease, poorly controlled

diabetes, or poorly controlled congestive heart failure); a history of alcoholism or substance

abuse within the past year.  Severity of the cognitive deficit was measured in all subjects using

the Mini Mental State Exam (MMSE)5 revealed an average score for the group of 23 (SD 5.39);

moderate AD patients scored between 15-19 with mild patient scoring between 20-25.  There

were a total of 9 females and 11 males, an average age of 76.1 (SD 6.36), and average

educational level of 15.6 (SD 2.75).

Scanning Protocol.  All scans were derived from a GE 1.5T scanner with the following

protocol: Coronal 3D volumetric spoiled gradient echo, flip angle 25, TE=minimum FULL,

TR=minimum, FOV= 22 cm x 16.5 cm, 124 slices at 1.6 mm/slice, matrix 256 x192, phase FOV

(rectangular FOV), + 10 kHz BW.

Image Processing.  All scans were transferred from archived digital sources in 16bit

format and manually edited to remove the skull and scalp taking particular caution to preserve

the sulcal and subdural CSF.  A binary brain mask was then created from the manually edited file

and used in a radio frequency bias field correction algorithm using a histogram spline sharpening

method6 to eliminate intensity drifts attributable to scanner field inhomogeneity.  After

inhomogeneity correction a supervised tissue classifier generated detailed maps of GM, WM,
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and CSF in the subjects’ native space.  Briefly, 120 samples of each tissue class were

interactively tagged to compute the parameters of a Gaussian mixture distribution that reflects

statistical variability in the intensity of each tissue type.7  A nearest neighbor tissue classifier

assigned each image voxel to a particular tissue class (GM, WM, or CSF) or to a background

class (representing extra-cerebral voxels in the image). The inter-rater and intra-rater reliability

of this protocol, and its robustness to changes in image acquisition parameters, have been

described previously.8  Gray and white matter maps were retained for subsequent analysis.

Native space, skull-stripped, inhomogeneity corrected images were then registered to the

standard 3D stereotaxic Atlas space1 using AIR2 to produce three registration matrices: 12

parameter affine (12p), 30 parameter 2nd order warp (2nd order), or 168 parameter 6th order warp

(6th order).

Regions of Interest (ROI) construction. To aid manual ROI construction a surface model

of each subject’s cortex was automatically extracted9 as previously described.10  A mesh-like

surface is deformed to fit the brain-CSF tissue intensity value of each skull-stripped image

volume.  The cortical surface software was modified to permit high-resolution extraction of both

the lateral and medial hemispheric surfaces, aiding ROI volumetric construction on orthogonal

image slices.  The following landmarks were outlined on each dataset: the Sylvian fissure;

central, precentral, and postcentral sulci; superior temporal sulcus (STS) main body, STS

ascending and posterior branches, and primary and secondary intermediate sulci; inferior

temporal, superior and inferior frontal, intraparietal, transverse occipital, olfactory,

occipitotemporal, collateral, callosal sulcus and inferior callosal boarder; the paracentral, anterior

and posterior cingulate and the outer segment of double parallel cingulate sulci (when present);11

the superior and inferior rostral, parieto-occipital, anterior and posterior calcarine, and
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subparietal sulci.  This protocol is available on the internet12, 13 and has known inter-rater and

intra-rater reliability, as previously reported.14

In addition to contouring the major and minor sulci, a set of six midline landmark curves

bordering the longitudinal fissure was outlined in each hemisphere to establish limits to aid

dividing the brain ROI into left and right.  Spatially registered gray scale image volumes in the

three orthogonal coronal, axial, and sagittal planes (available for simultaneous viewing with the

3D surface model in the Display software package run on the McIntosh OS X platform available

at: http://www.bic.mni.mcgill.ca/software/Display/Display.html) were manually segmented into

34 volumetric ROI for each subject’s left and right hemisphere (see Figure 1 and Table 1).  All

surface and deep brain landmarks were defined according to detailed anatomical protocols11-16

and atlasing methods.17-23  Extension of the gyral ROI into the underlying WM was accomplished

by a “spokes-of-the wheel” technique with its pattern, defined in the Atlas target space, projected

down 9 parameter transforms into each subject’s native space data reoriented to the Atlas via

rigid body transforms.  In this canonical orientation each subject’s brain data was manually

edited to produce the landmarks and ROI described above.  Once all 68 left and right 3D ROI

were created the GM, WM, and CSF tissue maps were used to partition the ROI into their three

tissue components.  These subdivided ROI where then projected down the 3 transformation

matrices into the Atlas space to construct probability maps for 12p, 2nd order, and 6th order

SVPA’s.

_________________________

Table 1 and Figure 1
_________________________

SVPA construction.  IVO PLEASE INSERT METHODS HERE FOR

CONSTRUCTION AND TISSUE COUNTING IN THE SVPA’s.
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SVPA validation.  Determining which of the three constructed SVPA’s best extracts

automated tissue counts a comparison of the native space manual “gold standard” ROI counts

was preformed via Pearson correlation coefficients for each of the 66 ROI in the three SVPAs’s

across the 20 subjects.  Absolute tissue counts and tissue counts corrected for each subject’s

intracranial volume (IVC) were assessed.  Guided from our previous experience with past SVPA

construction24 we also evaluated GM, and WM ratios (GM+CSF/CSF = GM%, and

WM+CSF/CSF = WM%) since the tissue probability clouds in the automated SVPA assessments

count all three tissue types and atrophy will increase the CSF component of the automated

counts.

Results

Figure 2ABC demonstrates the Pearson correlation coefficients for the absolute tissue

counts in the 3 SVPA’s compared to the “gold standard” native space counts.  Evaluation of the

ICV corrected counts showed no advantage over absolute counts.  Regions with the smallest

tissue components (e.g. ventricular GM, and WM) have the worst automated correlations to the

manually derived counts.  Regional gradients constructed from higher order warps often showed

superiority to the gradients derived from the linear registrations to the atlas.

_________________________

Figure 2ABC
_________________________

Given that the probability gradients constructed from the three tissue types will count all

voxels from the GM, WM, and CSF that fall within them in any given subject the GM ratio

(GM% = GM+CSF/CSF) and WM ratio (WM% = WM+CSF/CSF) counts were also compared

to the manually derived ratios as shown in Figure 3AB.  Absolute counts were used instead of
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ratio counts in Figure 3AB however when the regions had primarily one tissue type (absolute

CSF counts used for the ventricles in A and B, absolute GM counts used for the hippocampus,

thalamus, subtantia nigra, lenticular, and caudate nuclei in A).  The use of ratios markedly

improved the correlation in the automated counting methods compared to manual counting

across most regions with the mean left and right GM ratio “r values” for the 3 SVPAs being 0.87

for the 12p SVPA, 0.895 for the 2nd SVPA, and 0.90 for the 6th SVPA (calculated with the

absolute GM substitutions noted above).

_________________________

Figure 3AB
_________________________

Visual inspection of the probability gradients constructed from the three different

registration matrices reveals the population’s anatomical variability, and how that variability is

controlled across high parameter and low parameter registrations as shown for the medial

temporal regions in Figure 4ABC.  Right-sided variability of the amygdala and hippocampus is

controlled better with 6th order warps compared to 12 parameter linear registrations (also see

Figure 3A for “r values” derived in the ratio counts from these regional gradients).

_________________________

Figure 4ABC

_________________________

The most difficult region for the automated SVPA to control population variability in was

the parahippocampus (see Figures 5ABC and Figure 3A).  Although high order warping

improved GM ratio counts in the 6th order SVPA over the 2nd order and 12 parameter SVPAs for

the right anterior parahippocampus it did not improve these counts in the left posterior

parahippocampus.
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_________________________

Figure 5ABC

_________________________

Control of cortical variability by high order warping was best in the left lateral

orbitofrontal cortex as seen in Figure 6A.  In addition to medial temporal laterality differences

across the three SVPAs’ performance in automated tissue counting the sub-callosal medial

frontal area was another paralimbic region having marked asymmetry in variability (see Figure

6B and Figure 3A).

Discussion

We sought to develop an imaging assessment method that achieved the following goals:

1) The imaging strategy must control for anatomic variability and registration errors produced

when comparing datasets in a common coordinate system.  We chose a Talairach compatible

coordinate system constructed from a population most similar to that found in clinics evaluating

dementia patients as our “target atlas space”.1, 10, 25, 26  The best SVPA within this atlas space is

somewhat regionally dependent but in general the higher order 2nd and 6th SVPAs out performed

the 12p SVPA in controlling anatomic variability and registration errors.  The increased

processing time necessary for the higher order warps (30 min. versus 5 min. when run on a G4

processor on the McIntosh OSX platform) might out weigh the 3% improvement in accuracy

(average r = 0.90 for 6th SVPA versus 0.87 for the 12p SVPA).

2) The imaging strategy must allow for regionally testable hypotheses.  This is the first

imaging assessment technique that allows for such diverse regionally selected brain analysis

given the 204 sub-volumes embedded in each SVPA.  3) To ensure inter-center application the

imaging strategy must be automated, freely available, and not require extensive computer
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resources.  We present here an automated tissue counting method that uses freely available

software packages compiled on a G4 McIntosh running OSX.  4) The imaging analysis should

accommodate growth in its population data.  Use of this assessment method will provide regional

tissue counts for an individual subject with the standard deviation each count has within a larger

population.  This population will increase in size as the number of subjects measured by it

increases.  The population distribution data will be made available to the users of this method

contingent upon their sharing of their data with other users.  Only through open sharing of the

assessment technique and growing population can sufficient statistical power be achieved to

diagnosis disease in individual patients.
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Table 1.  Regions constructed in the three sub-volume probabilistic atlases (SVPA’s) associated

with their numerical labels shown in the Pearson correlation graphs in Figures 2 and 3.  Each
region has probability gradients constructed from the three tissue types derived from the

segmentation of native space scans of 20 subjects registered to the atlas across three matrices.

Region Label
Cerebellum 1
Occipital 2
Superior Parietal 3
Inferior Parietal 4
Posterior Cingulate 5
Superior Temporal 6
Middle Temporal 7
Inferior Temporal 8
Anterior Parahippocampal 9
Hippocampus 10
Amygdala 11
Temporal Pole 12
Posterior Parahippocampal 13
Caudal Anterior Cingulate 14
Rostral Anterior Cingulate 15
Sub-Callosal Frontal 16
Medial Orbital Frontal 17
Lateral Orbital Frontal 18
Inferior Frontal 19
Middle Frontal 20
Superior Frontal 21
Pre-Central 22
Post-Central 23
Insula 24
Ventricles 25
Substantia Nigra 26
Midbrain 27
Pons 28
Medulla 29
Basal Medial Diencephalon 30
Thalamus 31
Nucleus Accumbens 32
Lenticular Nucleus 33
Caudate Nucleus 34
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Figure 2A-C.  Pearson correlation coefficients for the absolute grey matter (A), white matter
(B), and cerebral spinal fluid (CSF) counts for all sub-volumes constructed using three different

alignments to the population based target atlas: 12 parameter affine, 2nd order warp, and 6th order
warp.  All automated counts were compared against the “gold standard” native-space counts to

produce “r values” across each of the twenty subjects used to construct the three sets of

probability gradients.  (See Table 1 for the regions studied).
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Figure 2B

Figure 2C
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Figure 3AB.  Pearson correlation coefficients for the grey matter (A) and white matter (B) ratios

controlling for the amount of CSF in each sub-volume constructed (see text) using three different
alignments to the population based target atlas: 12 parameter affine, 2nd order warp, and 6th order

warp.  All automated counts were compared against the “gold standard” native-space counts to
produce “r values” across each of the twenty subjects used to construct the three sets of

probability gradients.  (See Table 1 for the regions studied).

Figure 3A

Figure 3B

Note: absolute CSF counts used for the ventricles in A and B, absolute GM counts used for the
hippocampus, thalamus, subtantia nigra, lenticular, and caudate nuclei in A.
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Figure 4ABC.  Probability gradients for grey matter voxels in medial temporal structures
constructed across different registration matrices of the 20 subjects into the atlas.  (A)
Amygdalar gradients derived from 6th order warps (left) compared to 12 parameter registrations
(right).  (B and C) Hippocampal gradients derived from 6th order warps (left) compared to 12
parameter (right) registrations.
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Figure 5ABC.  Probability gradients for grey matter voxels in medial temporal structures
constructed across different registration matrices of the 20 subjects into the atlas.  (A) Anterior
parahippocampal gradients derived from 6th order warps (left) compared to 2nd order warps
(right).  (B and C) Posterior parahippocampal gradients derived from 2nd order warps comparing
the differential laterality effects in the population.
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Figure 6ABC.  Probability gradients for grey matter voxels in cortical structures constructed
across different registration matrices of the 20 subjects into the atlas.  (A) Lateral orbitofrontal
gradients derived from 6th order warps (left) compared to 12 parameter registrations (right).  (B)
Subcallosal frontal gradients derived from12 parameter registrations comparing the differential
laterality effects in the population.


