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ABSTRACT

In this paper we develop a new approach of analyzing 3D
shapes based on the eigen-system of the Laplace-Beltrami
operator. While the eigenvalues of the Laplace-Beltrami op-
erator have been used previously in shape analysis, they are
unable to differentiate isospectral shapes. To overcome this
limitation, we propose here a new signature based on nodal
counts of the eigenfunctions. This signature provides a com-
pact representation of the geometric information that is miss-
ing in the eigenvalues. In our experiments, we demonstrate
that the proposed signature can successfully classify anatom-
ical shapes with similar eigenvalues.

Index Terms— Shape, Laplace-Beltrami, eigenfunction,
nodal counts

1. INTRODUCTION

The analysis of 3D shapes is an important problem in medi-
cal imaging. By studying shapes, we can obtain detailed in-
formation about morphometry changes of anatomical struc-
tures. Recently there has been increasing interests in using
the eigenvalues of the Laplace-Beltrami operators to study
shapes [1, 2]. Features based on eigenvalues, however, have
limitations in resolving isospectral shapes. To overcome this
difficulty, we propose in this work a new signature derived
from the nodal counts of eigenfunctions and demonstrate its
advantage in classifying medical shapes.

Using the eigenvalues of the Laplace-Beltrami operator,
the shape DNA feature was proposed in [1] as a vector of
eigenvalues ordered according to their magnitude. The shape
DNA feature has been successfully applied to the classifica-
tion of anatomical structures [2]. One limitation of the shape
DNA feature, however, is that it cannot resolve so called
isospectral shapes with the same eigenvalues. There were
various examples of isospectral surfaces created by mathe-
matician [3–8]. In practice, we have also observed shapes
with quite different geometry but very similar distribution of
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eigenvalues. To address this ambiguity in the shape DNA
feature, we propose here a new signature derived from the
eigenfunctions of the Laplace-Beltrami operator. This new
feature is intrinsically defined over the surfaces and is pose
and scale invariant. Using the nodal counts of the eigenfunc-
tions, this feature provides a compact representation of the
new geometric information that is not described by the eigen-
values. In our experiments, we show that it has the ability of
resolving the ambiguity in the shape DNA feature.

2. LAPLACE-BELTRAMI SPECTRUM

Let (M, g) denote a Riemannian surface. For any point p ∈
M , we assume a local coordinate chart {U, (x1, x2)} and rep-
resent the metric as g(p) = (gij(x))i,j=1,2 in this chart. For a
smooth function ϕ ∈ C∞(M), the Laplace-Beltrami operator
is defined as:
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where (gij) is the inverse matrix of (gij) and G = det(gij).
The Laplace-Beltrami operator is self adjoint and elliptic,

so its spectrum is discrete. We denote the eigenvalues of 4M

as 0 = λ0 < λ1 < λ2 < · · · and the corresponding eigen-
functions as ϕ0, ϕ1, ϕ2, · · · such that

4Mϕn = λnϕn, n = 0, 1, 2, · · · . (2)

The eigen-system (λn, ϕn)|∞n=0 of 4M is intrinsic to the
manifold M and has the nice property of being isometric
invariant. Thus properties derived from the eigen-system of
4M are robust to natural pose variations such as rotation and
translation.

From a signal processing point of view, the eigenfunc-
tions of the Laplace-Beltrami operator is an extension of the
Fourier basis on Euclidean domains to general manifolds [9].
One famous example is the spherical harmonics, which are
the eigenfunctions of the Laplace-Beltrami operator on the
unit sphere, and they have been used in various shape analysis
tasks. On the other hand, our focus is quite different from
Fourier analysis. We believe the eigenfunctions by them-
selves contain rich information about surface geometry. In



fact, the heat kernel embedding theorem in [10] shows eigen-
functions of the Laplace-Beltrami operator should determine
the surface itself. So we are interested in using them to an-
alyze the underlying domain, i.e., the surface. We refer [11]
to more detailed properties about the eigen-system of the
Laplace-Beltrami operator. In our previous work [12, 13], we
showed that the Reeb graph of the eigenfunctions are useful
tools for the analysis of anatomical shapes such as hippocam-
pus and demonstrated its value in establishing point-wise
mapping of sub-cortical surfaces. In the next section, we
develop a new approach of utilizing the eigenfunctions for
shape analysis.

3. THE NODAL COUNT SEQUENCES

In this section, we will introduce the mathematical concept of
nodal counts and propose its use for shape analysis.

Let (M, g) be a given two dimensional compact Rie-
mannian manifold and ϕ be an eigenfunction of its Laplace-
Beltrami operator. The set ϕ−1(0) is then called nodal lines
of ϕ on (M, g). Every connected component of M\ϕ−1(0)
is called a nodal domain of ϕ and the number of nodal do-
mains is called the nodal number of ϕ. Theoretically one can
have the following properties about the nodal lines and nodal
domains of eigenfunctions [14].

Theorem 3.1 1. (Courant’s nodal domain theorem) The
number of nodal domains of the n-th eigenfunction ≤
n+1;

2. The nodal lines are C2-immersed one dimensional
closed submanifolds. Therefore, nodal lines are closed
C2-immersed contours on M .

As a demonstration, we plot out the nodal domains of
three different shapes in Fig.1. From these examples, we can
clearly see the above properties are observed.

Given the eigenfunction sequence {ϕ1, ϕ2, · · · } of (M, g),
we can define the Laplace-Beltrami nodal count sequence
of M as the sequence {l1, l2, · · · }, where ln is the number
of nodal domains of the n-th eigenfunction. Similar to the
eigenvalues of 4M , the nodal count sequence is rotation and
translation invariant. In addition, it has the nice property of
being scale invariant. The notion of nodal count sequence has
previously been explored in the physics literature [15–19]. In
particular, it poses the question: “can one count the shape of
a drum?” This is an analog of Kac’s famous question: “Can
one hear the shape of a drum?” Intuitively, if two isospec-
tral surfaces share the same shape DNA and have different
geometry, they should have different eigenfunctions, which
implies the possibility of the nodal count sequence contain-
ing more information than the shape DNA about the surface
geometry. In our work, we extend this idea to the analysis of
anatomical shapes. More specifically, we will study whether

the nodal count sequences can provide extra information than
the feature of shape DNA.

Numerically, we use the finite element method (FEM) to
compute the eigen-system of the Laplace-Beltrami operator.
For any given surface M in R3, we represent M as a triangu-
lar mesh {V = {vi}N

i=1, T = {Tl}L
l=1}, where vi is the i-th

vertex and Tl is the l-th triangle. We denote hl as the diam-
eter of the triangle Tl and h = max {hl}. One can choose
linear elements {ψh

i }N
i=1, such that ψh

i (vj) = δi,j and write
Sh = SpanR{ψh

i }N
i=1. Then the discrete version of the con-
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Then the discrete variational problem is equivalent to the gen-
eralized matrix eigen-problem that can be easily solved with
MATLAB:

{
Ahx = λhBhx, where x = (x1, · · · , xN )T

ϕh =
∑N

i xiψ
h
i

(5)

To compute the nodal number of a given eigenfunction ϕn of
surface (M, g), we count the number of connected compo-
nents of the triangular mesh with the same sign of ϕ.

Following [20], we have the upper bounds for the numeri-
cal accuracy in computing the eigenfunction and eigenvalues.

Theorem 3.2 Let (ϕh
n, λh

n) be the eigen-system computed
with FEM, then we have:

||ϕn − ϕh
n|| 6 Ch2λn (6)

λn 6 λh
n 6 λn + 2δh2λ2

n (7)

where (ϕn, λn) are the true eigen-system, and C and δ are
constants.

From the above theorem, we can see the accuracy of the
eigenfunction decreases as the order n increases for a given
h. As a result, the nodal counts for high order eigenfunc-
tions are noisier than that of the low order eigenfunctions.
However, the more eigenfunctions we can use, the more
geometric information can be obtained. We need to find a
balance between using the nodal number of high frequency
eigenfunction and overcoming the numerical issue. Based
on this consideration, we propose the following weighted l2

distance between two nodal count sequences {ln}∞n=1 and
{l̃n}∞n=1:

Dist({ln}∞n=1, {l̃n}∞n=1) =

√√√√
∞∑

n=1

(
1

nα
)2(ln − l̃n)2 (8)
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Fig. 1. (a): Nodal lines and nodal domains of the 2-nd eigenfunction of a putamen and the nodal number is 3. (b) Nodal lines
and nodal domains of the 4-th eigenfunction of an armadillo, the nodal number is 5. (c) Nodal lines and nodal domains of the
4-th eigenfunction of a cow and the nodal number is 3.

where α > 0. In our experiments, we demonstrate that the
nodal count sequences under this weighted l2 distance pro-
vide robust performance for shape classification.

4. EXPERIMENTAL RESULTS

In this section, we present experimental results to demonstrate
the application of the nodal count sequence in shape analysis.
In particular, we show that the nodal counts of the Laplace-
Beltrami operator is able to resolve isospectral shapes.

The 3D shapes used in the first experiment are three puta-
men and three caudate surfaces shown in Fig.2. While the
putamen and caudate are visually quite different, they share
very similar distribution of eigenvalues, i.e., the shape DNA,
as shown in Fig.2(g). For each group of surfaces, we use their
nodal count sequences and the shape DNA to embed them
into a 2D space with multi-dimensional scaling(MDS) tech-
nique. The details of this embedding process is summarized
as follows.

1. For a given surface (M, g) represented by a triangle
mesh, we compute the first N eigenvalues and eigen-
functions of the Laplace-Beltrami operator by the finite
element method to obtain the signature.

2. For a group of surfaces, we compute the pairwise
weighted l2 distance of their corresponding signatures.
The pairwise distances are stored in a distance matrix.

3. Using the distance matrix, the MDS technique is ap-
plied to embed the surfaces into the Euclidean space.

In our experiment, we choose N = 300, α = 1, and the
embedding results with the shape DNA and the nodal count
sequences are shown in Fig. 2 (g) and (h). From the results,
we can see clearly that the nodal counts provide better sepa-
ration of these two groups. This demonstrates the ability of
the nodal count sequences in resolving isospectral surfaces.
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Fig. 2. (a)(b)(c) Caudate surfaces. (d)(e)(f) Putamen. (g)
Top: the first 300 eigenvalues of the 6 shapes. Bottom: MDS
embedding results with the shape DNA. (h) Top: The first
300 nodal counts of the 6 shapes. Bottom: MDS embedding
results with the nodal count sequences. ( red: caudate; blue:
putamen.)

In the second experiment, we demonstrate the above
shape classification procedures to a larger data set. This data
set includes three groups of surfaces: 20 hippocampus, 20
putamen, and 20 caudate. For the three groups, the eigen-
value sequences and nodal count sequences were computed.
By applying the same MDS technique as in the first experi-
ment to these signatures, we can embed the 60 surfaces into
a 2D space and the results are shown in Fig. 3. Clearly this
results show that the nodal count sequence provides better
classification.
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Fig. 3. Top: the MDS embedding of the surfaces with the
shape DNA signature. Bottom: the MDS embedding of the
surfaces with the nodal count sequences. The first 300 eigen-
values and eigenfunctions were used in both embeddings.
(red ’·’: caudate; blue ’+’: putamen; black ’∗’: hippocam-
pus.)

5. CONCLUSIONS AND FUTURE WORK

In this paper we proposed to use the nodal count sequences of
the Laplace-Beltrami eigenfunctions as a novel signature of
3D shapes. We demonstrated its ability of resolving isospec-
tral shapes by classifying anatomical structures with very sim-
ilar distribution of eigenvalues. In our future work, we will
apply it to the task of shape retrieval from databases. We are
also investigating its application in classifying hippocampal
surfaces from normal controls and Alzheimer’s disease.

6. REFERENCES

[1] M. Reuter, F.E. Wolter, and N. Peinecke, “Laplace-
Beltrami spectra as Shape-DNA of surfaces and solids,”
Computer-Aided Design, vol. 38, pp. 342–366, 2006.

[2] M. Niethammer, M. Reuter, F.-E. Wolter, S. Bouix,
N. Peinecke M.-S. Koo, and M. Shenton, “Global med-
ical shape analysis using the Laplace-Beltrami spec-
trum,” in Proc. MICCAI, 2007, vol. 1, pp. 850–857.

[3] J. Milnor, “Eigenvalues of the laplace operator on cer-
tain manifolds,” Proc. Nat. Acad. Sci. U.S.A., vol. 51,
pp. 542, 1964.

[4] Sunada T, “Riemannian coverings and isospectral man-
ifolds,” Ann. of Math., vol. 121, no. 1, pp. 169–186,
1985.

[5] Gordon C, Webb D., and Wolpert S, “One cannot hear
the shape of a drum,” Bull. Am. Math.Soc., vol. 27, no.
1, pp. 134–138, 1992.

[6] Chapman J. S, “Drums that sound the same,” Amer.
Math. Monthly, vol. 102, no. 2, pp. 124–138, 1995.

[7] Fisher M E, “On hearing the shape of a drum,” J. Com-
binatorial Theory, vol. 1, pp. 105–125, 1966.

[8] Brooks Robert, “Isospectral graphs and isospectral sur-
faces,” Seminaire de Theorie Spectrale et Geometrie,
vol. 15, pp. 105–113, Annee 1996-1997.

[9] A. Qiu, D. Bitouk, and M. I. Miller, “Smooth functional
and structural maps on the neocortex via orthonormal
bases of the Laplace-Beltrami operator,” IEEE Trans.
Med. Imag., vol. 25, no. 10, pp. 1296–1306, 2006.

[10] P. Bérard, G. Besson, and S. Gallot, “Embedding rie-
mannian manifolds by their heat kernel,” Geom. Funct.
Anal., vol. 4, no. 4, pp. 373–398, 1994.

[11] D. Jankobson, Nadirashbili N, and J. Toth, “Geometric
propertiess of eigenfunctions,” Russian Math. Surveys,
vol. 56, no. 6, pp. 1085–1105, 2001.

[12] Y. Shi, R. Lai, S. Krishna, N. Sicotte, I. Dinov, and
A. W. Toga, “Anisotropic Laplace-Beltrami eigenmaps:
Bridging Reeb graphs and skeletons,” in Proc. MMBIA,
2008.

[13] Y. Shi, R. Lai, K. Kern, N. Sicotte, I. Dinov, and
A. W. Toga, “Harmonic surface mapping with Laplace-
Beltrami eigenmaps,” in Proc. MICCAI, 2008.

[14] Shiu-Yuen Cheng, “Eigenfunctions and nodal sets,”
Comment. Math. Helvetici, vol. 51, pp. 43–55, 1976.

[15] S. Gnutzmann, U. Smilansky, and N. Sondergaard, “Re-
solving isospectral ’drums’ by counting nodal domains,”
J. Phys. A, vol. 38, 8912(2005).

[16] S. Gnutzmann, P. Karageorge, and U. Smilansky, “Can
one count the shape of a drum?,” Phys. Rev. Lett., vol.
97, 090201(2006).

[17] S. Gnutzmann, P. Karageorge, and U. Smilansky, “A
trace formula for the nodal count sequence,” Eur. Phy.
J. Speical Topics, vol. 145, pp. 217–229, 2007.

[18] R. Band, T. Shapira, and U. Smilansky, “Nodal do-
mians on isosepctral quantum graphs: the resolution of
isospectrality?,” J. Phys. A, vol. 39, 13999(2006).

[19] Panos D. Karageorge and Uzy Smilansky, “Counting
nodal domains on surfaces of revolution,” J. Phys. A:
Math. Theor., vol. 41, 205102(2008).

[20] Gilbert Strang and George J.Fix, An analysis of the
finite elment method, Prentice-Hall, Inc., Englewood
Cliffs,N.J., 1973.


