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Abstract. In this paper we propose a novel approach for the mapping
of 3D surfaces. With the Reeb graph of Laplace-Beltrami eigenmaps,
our method automatically detects stable landmark features intrinsic to
the surface geometry and use them as boundary conditions to compute
harmonic maps to the unit sphere. The resulting maps are diffeomor-
phic, robust to natural pose variations, and establish correspondences
for geometric features shared across population. In the experiments, we
demonstrate our method on three subcortical structures: the hippocam-
pus, putamen, and caudate nucleus. A group study is also performed
to generate a statistically significant map of local volume losses in the
hippocampus of patients with secondary progressive multiple sclerosis.

1 Introduction

In many imaging studies, surface mapping plays an important role as it can pro-
vide localized information complementary to volume measurements [1]. The task
of mapping general 3D surface models, however, remains challenging because it
is usually difficult to define homologous points across population. In this paper,
we propose a novel method of computing maps for a class of subcortical struc-
tures by using Laplace-Beltrami eigenmaps to capture their salient geometry and
harmonic maps to establish diffeomorphic correspondences.

Various approaches have been proposed in previous work for the automated
construction of surface maps. The first approach computes surface maps based
on a canonical parameterization such as the spherical parameterization [2–5].
Using techniques from image registration, a map between two surfaces can be
established by warping the image space surrounding the anatomical structure
of interest [6–8]. The medial model, or skeleton, is a popular tool to represent
shapes and it can also be used to construct geometrically intuitive maps between
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(a) Hippocampus. (b) Putamen. (c) Caudate nucleus.

Fig. 1. Examples of subcortical structures.

surfaces [9]. Because the skeleton is sensitive to noise, a simplified topology was
usually assumed for robustness and consistency [10, 11].

In this work we propose a novel approach for the automated mapping of
three subcortical structures: the hippocampus, putamen and caudate nucleus.
As shown in Fig. 1, these shapes share a similar profile globally. For each shape,
we can consider its thinner part on the left as the “tail”, and the thicker part on
the right as the “head”. This kind of division can also be useful in anatomical
and functional studies. Not only globally, these shapes also have locally similar
ridge features as highlighted by the red curve in each picture. By using Laplace-
Beltrami eigenmaps, we describe in section 2 an automated approach to capture
these salient features. After that, the landmarks are used to guide harmonic
maps to the sphere in section 3 and generate feature-aligned, one-to-one corre-
spondences across shapes. Experimental results will be presented to demonstrate
our algorithm in section 4. Finally, conclusions are made in section 5.

2 Laplace-Beltrami Eigenmaps of Surfaces

Given a surface M, we compute a function f : M → R that maps M smoothly
into R by solving

f = arg min
‖f‖=1

∫
M

‖ ∇Mf ‖2 dM, (1)

where ∇M is the intrinsic gradient operator on M. Using Stokes’ theorem, we
have

∫
M

‖ ∇Mf ‖2 dM =
∫
M

(−ΔMf)fdM (2)

where ΔM is the Laplace-Beltrami operator on M. For a manifold with bound-
ary, the above equation still holds if we choose the Neumann boundary condi-
tion. Based on (2), we find the optimal map f by considering the spectrum of
the operator ΔM , which is discrete for a compact manifold. Let us denote the
eigenvalues of ΔM as λ0 ≤ λ1 ≤ λ2 ≤ · · · and the corresponding eigenfunctions
as f0, f1, f2, · · · . In previous work on shape analysis, the set of eigenvalues was
used for classification [12] and the eigenfunctions were used for denoising [13].
Here we use the spectrum to characterize the salient geometry of M. For λ0 = 0,



3

(a) The eigenmap f1. (b) Level sets of f1.

(c)The Reeb graph.
(d) Level sets of g1 and the detected

feature points (black dots).

Fig. 2. The Laplace-Beltrami eigenmaps of a hippocampal surface.

the eigenfunction f0 is constant. So the smoothest and non-trivial map from M
to R is f1 because it achieves the minimal energy λ1 =

∫
M ‖ ∇Mf1 ‖2 dM.

For compact manifolds, a generic property of the Laplace-Beltrami operator
is that its eigenfunctions are Morse functions [14]. This motivates us to use the
Reeb graph [15] of f1 to capture the global property of the surface intrinsically.
For the eigenmap f1 : M → R, its Reeb graph is defined as the quotient space of
M× R with the equivalent relation (x1, f1(x1)) � (x2, f1(x2)) for x1, x2 ∈ M.
The structure of the Reeb graph is closely related to the global characteristics,
such as topology, of the manifold M. For example, the number of loops in the
Reeb graph of a Morse function on M equals its number of genus. Besides that,
we can see below it reveals richer structural similarities between different shapes,
such as the hippocampus and the sphere. To build the Reeb graph numerically,
we assume the surface M is represented as a triangular mesh and compute
its Laplace-Beltrami spectrum with the finite element method [12, 13]. As a
result, the eigenmap f1 is defined on each vertex of M. Let f1 ∈ [fmin, fmax].
We trace the level sets of f1 on M at K values (α1, α2, · · · , αK) such that
fmin = α0 < α1 < α2 < · · · < αK < fmax = αK+1 and

(αk+1 − αk)
∫

Mk
dMk∫

Mk
‖ ∇f1 ‖ dMk

= constant, k = 0, 1, · · · ,K (3)

where Mk = {x ∈ M|αk < f1(x) ≤ αk+1}. This generates a set of level con-
tours distributing evenly spaced on the surface. Note that each level set can be
composed of multiple contours for arbitrary surfaces. With each contour as a
node in the Reeb graph, two neighboring level contours are connected with an
edge if they can deform into each other without crossing other contours.

With the hippocampus in Fig. 1(a) as an example, we visualize in Fig. 2 (a),
(b), (c) the eigenmap f1, its level contours, and the Reeb graph, respectively.
If we assume the hippocampus is aligned in Talairach orientation and fix the
sign of f1 to be negative at the most posterior vertex of M, we have the Reeb
graph as an explicit representation of the simple, tail-to-head structure of the
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hippocampus. As we traverse the graph from the node representing the level
set f1 = α1 to the other end, we move from the tail of the hippocampus to
its head. Interestingly, if we compute the Laplace-Beltrami eigenmap of the
sphere, its Reeb graph also has a chain structure as in Fig. 2(c). Using the Reeb
graph of the Laplace-Beltrami eigenmap, we thus have a richer and intrinsic
characterization of structural similarities between shapes beyond topology. In
this case, it provides a deeper justification of using spherical parameterizations
for the mapping of hippocampal surfaces besides the fact they both have genus-
zero topology. On the other hand, it might improve our understanding of the
difficulties in building spherical parameterizations for more irregular shapes and
eventually lead to the selection of more suitable parameterization domains.

With the Reeb graph providing information about the global structure of a
surface, we compute a second Laplace-Beltrami eigenmap to detect the point
on level contours that marks the salient local feature highlighted in Fig. 1. For
this purpose, we represent a contour as a set of L points xl(1 ≤ l ≤ L) and
build a smooth mesh in R

3 with the contour as the boundary. As a first step, we
construct a Delaunay triangulation from these points using the software triangle
[16]. The final smooth mesh P is then obtained by applying Laplacian smoothing
to vertices belonging to the interior of this mesh while fixing the boundary points
xl. Using the Neumann boundary condition, we map this surface patch to R by
computing the first eigenfunction of the Laplace-Beltrami operator on P , which
we denote as g1. As in the first eigenmap, we remove the ambiguity in the sign
of g1 by fixing it to be negative at the most lateral vertex in P .

As an illustration, we visualize the second eigenmap in Fig. 2(d) by plotting
the level sets of the eigenmap g1 on three interpolated surface patches. From
the results we can see the second eigenmap g1 projects each patch along the
medial-to-lateral direction for brains in Talairach orientation, and we can locate
the feature point on the ridge by picking the point on the level contour attaining
the maximal values in g1. To detect the whole ridge line, we compute the above
eigenmap g1 for the level sets of f1 at the value αk for K1 ≤ k ≤ K2 and connect
their feature points sequentially to form the landmark curve CM shown as the
red contour in Fig. 1(a). For the subcortical surfaces under study here, the ridge
feature becomes less salient as we approach the tail or head part, thus we choose
K1 > 1 and K2 < K to pick out the most distinguished part of the ridge line and
use it to guide the mapping process. For all surfaces tested so far in our work, we
sample K = 100 level contours from the first eigenmap and find that choosing
K1 = 20,K2 = 85 gives robust results in the second embedding. More generally,
these parameters may as well be determined with a learning-based approach.

3 Spherical Mapping With Landmark Constraints

Following the landmark detection process with Laplace-Beltrami eigenmaps, we
compute a harmonic map from each surface to the sphere. By combining these
harmonic maps, we can obtain diffeomorphic maps between different surfaces[17].
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(a) The 6 regions on the
hippocampus.

(b) The 6 regions
on the sphere.

(c) The chessboard
pattern.

(d) The initial map. (e) The final map.

Fig. 3. The computation of the harmonic map from a hippocampus to the unit sphere.

To ensure the one-to-one correspondences on the landmark curve CM of
different surfaces are maintained in their spherical parameterizations, we sample
a curve CS = {(θ, φ)|0.25π ≤ θ ≤ 0.75π, φ = 0} on the unit sphere S with
K2 −K1 + 1 evenly spaced points and define a boundary condition by fixing the
map from each landmark point on CM to the corresponding point on CS with
the same index. Besides the boundary condition, the Laplace-Beltrami eigenmaps
also provide a convenient way of estimating a good initial map from M to S.
Using the detected feature point as the origin, we divide each level contour of
f1 with its index K1 ≤ k ≤ K2 into 4 segments of equal length and connect
the corresponding end points of these segments to divide the hippocampus into
6 regions as shown in Fig. 3(a). Similarly we divide the sphere into 6 regions
as shown in Fig. 3(b). For a point in a specific region on M, we find its initial
map as the point in the corresponding region on S that correlates best with
it in terms of their distances to the 4 boundary segments of the regions. The
quality of the map is visualized in Fig. 3(d), which is obtained by using the
initial map to project a colored chessboard on the sphere shown in Fig. 3(c) to
the hippocampus.

Starting from the initial map, the numerical algorithm we developed previ-
ously [18] is then used to compute the harmonic map from M to S while re-
specting the boundary condition. By representing the surface M and the sphere
S implicitly as a signed distance function ϕ and ψ, respectively, we compute the
harmonic map u : M → S by solving the following PDE iteratively:

∂u
∂t

= (I −∇ψ(u(x, t))∇ψ(u(x, t))T )∇ · (Jϕ
u )T (4)

where Jϕ
u = Ju(I − ∇ϕ∇ϕT ) is the intrinsic Jacobian of the map u with Ju

denoting the regular Jacobian in R
3. When discretizing the gradient operators

in (4), adaptive numerical schemes were developed in [18], where more numer-
ical details can be found, to take into account the boundary condition on the
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landmark curve. For the hippocampus in Fig. 3, the result of the harmonic map
is visualized in Fig. 3(e). The quality of the map is illustrated in its ability of
preserving the regularity of the chessboard pattern.

4 Experimental Results

In this section we present experimental results to demonstrate the application of
our algorithm in brain mapping. In our method, the only assumption on the input
data is that they are from brains in Talairach orientation. Both the landmark
detection step using Laplace-Beltrami eigenmaps and the harmonic mapping
process are intrinsic to the surface geometry, so natural pose variations among
shapes can be handled automatically. In the first experiment, we demonstrate
this property of our algorithm and its ability in aligning common geometric
features on three subcortical structures: the hippocampus, putamen, and caudate
nucleus. Two examples from each structure are used as input data and shown in
the first column of Fig. 4. The whole mapping process is completely automated,
and it takes around 10 minutes on a PC for each surface. For each structure,
the harmonic maps of the two surfaces are visualized in the second and third
column of Fig. 4 by using the maps to project the chessboard pattern in Fig. 3(c)
onto the surfaces. For all examples, we can see geometrically salient features are
correctly aligned with our mapping algorithm even though they have different
poses.

In the second experiment, we apply our method to study changes in hip-
pocampal morphometry for patients with secondary progressive multiple sclero-
sis (SPMS). The input data are the left hippocampi from a group of 16 normal
controls and 11 patients with SPMS shown in their natural poses in Fig. 5. Once
the mapping to the sphere is completed, we project a regular triangular mesh of
the sphere to each surface, establishing one-to-one correspondences that are crit-
ical for group analyses. After factoring out rotation and translation, we compute
an atlas M, shown in Fig. 6, by averaging shapes from the control group. By
aligning each surface rigidly with the atlas, we compute the displacement from
each vertex on the surface to the corresponding vertex on M. To test group
differences, a Wilcoxon rank-sum test is applied to the displacement values of
the control and patient group at each vertex. The map of P values on all vertices
are visualized in Fig. 6(a), together with the average displacement of the patient
group in Fig. 6(b). From the results we can see large areas of volume losses in
the hippocampi of patients with SPMS are successfully localized. To correct for
multiple comparisons, we apply a permutation test [1] for 1 million times and
an overall P value of 0.000076 is obtained, which clearly shows the significance
of our mapping results.

5 Conclusions

In this paper we have developed a novel surface mapping algorithm applicable to
a class of subcortical structures. The maps from our method are diffeomorphic,
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Fig. 4. Mapping results of subcortical structures with different poses. Row one: hip-
pocampi; row two: putamens; row three: caudate nuclei.

Fig. 5. The hippocampal surfaces of (a) the control group; (b) the patient group.

and also correctly align geometric features, both locally and globally, that are
automatically detected with Laplace-Beltrami eigenmaps. An application of our
method in group analyses has also been presented to demonstrate its robustness
and ability of detecting anatomical changes due to pathology.
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