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Joint Sulcal Detection on Cortical Surfaces with
Graphical Models and Boosted Priors
Yonggang Shi, Zhuowen Tu, Allan L. Reiss, Rebecca A. Dutton, Agatha D. Lee,

Albert M. Galaburda, Ivo Dinov, Paul M. Thompson, Arthur W. Toga*

Abstract— In this paper, we propose an automated approach
for the joint detection of major sulci on cortical surfaces. By
representing sulci as nodes in a graphical model, we incorporate
Markovian relations between sulci and formulate their detection
as a maximum a posteriori (MAP) estimation problem over the
joint space of major sulci. To make the inference tractable, a
sample space with a finite number of candidate curves is auto-
matically generated at each node based on the Hamilton-Jacobi
skeleton of sulcal regions. Using the AdaBoost algorithm, we learn
both individual and pairwise shape priors of sulcal curves from
training data, which are then used to define potential functions in
the graphical model based on the connection between AdaBoost
and logistic regression. Finally belief propagation is used to
perform the MAP inference and select the joint detection results
from the sample spaces of candidate curves. In our experiments,
we quantitatively validate our algorithm with manually traced
curves and demonstrate the automatically detected curves can
capture the main body of sulci very accurately. A comparison
with independently detected results is also conducted to illustrate
the advantage of the joint detection approach.

Index Terms— Cortex, major sulci, shape prior, graphical
model, AdaBoost, boosted prior

I. INTRODUCTION

One of the most intriguing and difficult problems in brain
imaging is identifying and registering the convolution patterns
of the cortex. It is generally agreed that a set of major sulci
are relatively stable [1] and they have been used as landmark
curves for registration and locating structural and functional
areas on cortices [2], [3]. On the other hand, the automated
detection of these sulci is still a challenging problem due to the
complexity and variability of the convolution patterns and the
different forms these sulci may have in the folding patterns.
Thus, manual annotation remains the gold standard in brain
mapping practice. In this paper, we propose a novel approach
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for the joint detection of major sulci via the solution of an
inference problem on graphical models [4], which we construct
with boosting techniques [5] to incorporate prior knowledge
from manual tracing.

Previous work on sulcal detection mostly focused on de-
tecting each sulcus separately. Curvature features were first
used to develop semi-automated algorithms [6]–[8] with user
specification of start/end points. Depth features with respect to
a shrink wrap surface were also used to study sulcal regions
on cortical surfaces [9] or find their line representations [10].
Based on the idea of skeletons [11], [12] and digital topology
[13]–[15], medial models, or sulcal ribbons, of sulcal regions
were constructed from volume images [16]–[21], but user
inputs are still required to label specific sulcus from these
results.

To automate the sulcal detection process, prior models were
introduced to alleviate the difficulty of the problem. The
principal component analysis (PCA) of point sets [22] was
used to model the centroids of sulcal basins and help with the
labeling [23]. Based on spherical maps of cortical surfaces, a
hierarchical contour evolution scheme was developed using
a PCA model of major sulci [24]. Graphical models were
constructed with neural networks in [25] for simple surfaces,
which are subsets of major sulci, computed with the skele-
tonization algorithm in [16], and then annealing techniques
were used to label them. Based on a learning technique called
probabilistic boosting trees [26], an automated approach was
proposed in [27] to detect sulci from volume images, but each
curve was treated separately.

In this work, we propose a joint detection approach that
realizes sulcal detection via inference over graphical models of
major sulci. We assume that each major sulcus is represented
as a continuous curve on the cortical surface following a
manual tracing protocol [28]. While this assumption may omit
some interruptions over gyral regions, it is useful in improving
the regularity when these curves are used to guide the mapping
of cortical surfaces across population [3]. Based on boosting
techniques, we not only incorporate the individual shape prior
of each sulcal curve, but also model joint shape priors between
neighboring sulci and integrate this information through belief
propagation. From the practice of manual annotation, the use
of pairwise shape priors seems a natural idea. For example, the
pre-central sulcus usually needs to cross a gyrus to ensure it
follows a route as parallel as possible to the central sulcus. In
fact, such local dependencies are utilized fairly commonly to
handle complicated situations in protocols for manual tracing
[28].
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Fig. 1. An overview of our joint sulcal detection approach. The automatically detected sulci are plotted over the cortical surface with the color map on the
right.

As an illustration, we provide an overview of our method in
Fig. 1. In this example, the goal is to detect a set of eight major
sulci on a cortical surface: the central sulcus (CS), pre-central
sulcus (PreCS), post-central sulcus (PostCS), superior-frontal
sulcus (SF), inferior-frontal sulcus (IF), intra-parietal sulcus
(IP), sylvian fissure (Sylvian), and the superior-temporal sulcus
(ST). An undirected graphical model of eight nodes is used
to represent the Markovian relations of these sulci. Since the
random variable at each node is a sulcal curve that lives in an
infinitely dimensional shape space, it is generally difficult to
perform inference directly over such spaces. We overcome this
challenge by constructing a sample space containing a finite
number of candidate curves, as plotted over each node in the
graph in Fig. 1, greatly reducing the search range for each
variable. To incorporate both individual and pairwise shape
priors, we use boosting techniques to learn discriminative
shape models and use them to define potential functions on the
graphical model. Finally the max-product algorithm of belief
propagation is used to find the MAP estimation from the joint
sample spaces of the eight sulci as the sulcal detection results.

Compared with PCA models adopted in previous work [23],
[24], the boosting approach we use does not need to impose the
Gaussian assumption on shape models and can automatically
select and fuse a large set of informative features to model
both individual and pairwise shape priors. Our prior models
are learned automatically from training data and there is no
parameter to tune for different sulcal curves. Our method also
works directly on cortical surfaces and does not need spherical
maps of cortical surfaces [24].

Our work is most related to the sulci labeling algorithm
proposed in [25], where the nodes of the graph are simple
surfaces that oversample the major sulci and their labeling
is realized by matching with a template graph learned from
training data. In our work, we model each major sulcus as
a continuous curve. In addition, the learning techniques and
inference algorithms used in our work are different.

The rest of the paper is organized as follows. In section
II, we first present the general framework for joint sulcal
detection. After that, we develop the algorithm for generating
sample spaces of candidate sulcal curves in section III. A
learning-based approach for constructing potential functions
of graphical models is proposed in section IV to model priors
of sulcal curves. Experimental results are presented in section

V on a data set of 40 surfaces. Finally, we discuss possible
future extensions in section VI.

II. THE JOINT DETECTION FRAMEWORK

In this section, we present our general framework for
the joint detection of major sulci on cortical surfaces. By
using a graphical model to represent Markovian relations of
neighboring sulci, we realize automated sulcal detection by
performing a MAP estimation over the sample spaces of sulcal
lines.

Let M denote the cortical surface and C1, C2, · · · , CN be
the set of major sulci to be detected on M. To represent the
Markovian relation among these sulci, we use an undirected
graphical model G = (V,E), where V = {C1, C2, · · · , CN}
are the set of nodes, and E is the set of edges in the graph. As
an example, a graphical model is shown in Fig. 1 for the eight
major sulci: CS (C1), PreCS (C2), PostCS (C3), SF (C4), IF
(C5), IP (C6), Sylvian (C7) , and ST (C8). As the number
of major sulci is typically small, we can construct such graph
structures easily to encode desirable Markovian priors and it
only needs to be done once for the same detection task.

Besides the graph structure, we need to specify the sample
space for the random variable defined at each node and the
potential functions to completely characterize the probabilistic
graphical model. At each node in V , the random variable is a
sulcal line and it can take values in a shape space of curves
that is generally infinitely dimensional and difficult to analyze.
One possible solution is to use dimension reduction techniques
such as PCA models of curves [22] to generate each sulcal
line as a linear combination of several basis functions. But
the PCA models make the restrictive assumption of Gaussian
distributions and there is no guarantee that the generated
parametric curves will follow the sulcal regions. To overcome
this problem, we develop a novel algorithm, which will be
described in detail in section III, to automatically generate a
set of candidate curves for each node by combining geometric
features of sulcal regions and machine learning techniques.
These curves are guaranteed to be on the cortical surface and
they span a wide variety of possible routes for each sulcus
of interest. With these candidate curves as the sample space
Si of each node Ci, we convert the sulcal detection problem
to a tractable inference problem over a set of discrete random
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Fig. 2. An example of message passing in the graphical model of Fig. 1.

variables with the goal of selecting the best from the candidate
curves.

Based on the sample spaces of candidate sulcal curves, we
define two types of potential functions to complete the con-
struction of the graphical model: the local evidence function
φi : Si → R at each node Ci and the compatibility function
ψi,j : Si × Sj → R for each edge (Ci, Cj) ∈ E. Given
a candidate curve from Si, the local evidence function φi

gives the likelihood of this curve being the desirable sulcus
to be detected. The compatibility function ψ i,j represents
joint shape priors for two neighboring sulci (C i, Cj) and
measures how likely any two curves from S i × Sj can co-
exist as neighbors. To incorporate such individual and joint
shape priors, we propose a discriminative approach based on
AdaBoost [5] in section IV to learn both types of potential
functions from manually annotated training data. With the
discriminative approach, we can use a flexible and large set
of features derived from training data and selectively combine
them with boosting techniques to form the potential functions,
so there is no need of specifying parametric forms for either
the individual or joint shape prior models of sulcal lines.

The undirected graphical model defined above is a Markov
random field, so the joint distribution of all the sulci can be
factorized as a product of potential functions:

p(C1, · · · , CN ) =
1
Z

∏
(Ci,Cj)∈E

ψi,j(Ci, Cj)
∏

Ci∈V

φi(Ci) (1)

where Z is the partition function for normalization. The task
of finding the optimal set of curves (C ∗

1 , C
∗
2 , · · · , C∗

N ) in the
space S1 × S2 × · · · × SN is then a MAP estimation problem
defined as follows:

(C∗
1 , C

∗
2 , · · · , C∗

N ) = argmax
Cl,C2,··· ,CN

p(C1, · · · , CN ). (2)

To solve this inference problem over graphical models, we
use the max-product algorithm of belief propagation [4],
[29] because it can efficiently compute the optimal solution
for tree-structured graphs and also demonstrated very good
performance on graphs with cycles in various applications
[30], [31]. With belief propagation, each node in the graph
receives and sends out messages at every iteration of the
algorithm. For a node Ci, the message it sends to its neighbor
Cj is defined as:

mi,j(Cj) = max
Ci∈Si

ψi,j(Ci, Cj)φi(Ci)
∏

Ck∈N (Ci)\Cj

mk,i(Ci)

(3)

where N (Ci) are neighbors of Ci in the graph. This message
takes into account not only the local evidence φ i and the
compatibility function ψi,j , but also the messages the node
Ci received from its neighbors except Cj . As an illustration,
we show in Fig. 2 the flow of messages from the node C6

and C7 to C3, and then to C1 in the graphical model shown
in Fig. 1. After the message passing procedure converges, we
obtain the final belief at each node of the graph as:

bi(Ci) = φi(Ci)
∏

Cj∈N (Ci)

mj,i(Ci) i = 1, 2, · · · , N. (4)

and also the pairwise belief of each edge as:

bi,j(Ci,Cj) = φi(Ci)φj(Cj)ψi,j(Ci, Cj)

×
∏

Ck∈N (Ci)\Cj

mk,i(Ci)
∏

Ck∈N (Cj)\Ci

mk,j(Cj) (5)

Based on the final beliefs, we find an optimal configuration
of major sulci with the following procedure [32], [33].

1. Start from a node Ci and pick the optimal sulcus C∗
i at

this node as the one that maximizes bi(·).
2. For each node Ci visited, if it has a neighborCj unvisited,

find the optimal solution for Cj by maximizing the
pairwise belief function C∗

j = argmaxCj
bi,j(C∗

i , Cj).
Repeat step 2 until all nodes are visited.

For tree-structured graphs, the above algorithm guarantees
to find the globally optimal solution for the MAP estimation
problem in (2). It is possible that more than one solution
achieves global optimality for MAP estimation over graphs,
but in our experience this does not happen in any of our
sulci detection experiments. Nevertheless, we choose to fix the
starting node as the one corresponding to the central sulcus
in step 1 of the above procedure to remove the potential
ambiguity that exists theoretically.

III. SAMPLE SPACE GENERATION

Given a cortical surface M represented as a genus zero
triangular mesh, which we assume is a left hemispheric surface
aligned in a standard ICBM space [34] with a 9-parameter
affine registration including independent scaling in x-, y-,
and z- directions to account for brain size differences, there
are four main steps in our algorithm to generate a sample
space for each node in the graphical model: 1) extract the
skeleton of the sulcal regions; 2) partition the surface into the
lateral and medial part; 3) compute a set of possible start/end
points and route-control segments of candidate curves with
a learning-based approach; 4) generate candidate curves via
random walks on a graph built from the start/end points and
route-control segments.

A. Sulcal skeleton extraction

As a first stage toward sample space generation, we use the
algorithm of computing Hamilton-Jacobi skeletons on cortical
surfaces [35] to extract the skeleton of sulcal regions on
M. For completeness, we briefly describe the main steps
of computing the sulcal skeletons as illustrated in Fig. 3.
Using the mean curvature of the cortical surface M, it is
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(a) (b) (c)

Fig. 3. Main steps in computing the sulcal skeletons of a cortical surface. (a) The cortical surface. (b) The partition of the surface into sulcal and gyral
regions. (c) The Hamilton-Jacobi skeleton of the sulcal regions. End points of each branch are marked as green dots.

first partitioned into sulcal and gyral regions using graph cuts
[36], [37] and the result is shown in Fig. 3(b). After that, the
Hamilton-Jacobi skeleton method [38] is extended to triangular
meshes to compute the skeleton of sulcal regions. A pruning
process is finally applied to eliminate small branches with
length below a specific threshold, which is 10mm in all our
experiments. The sulcal skeletons are decomposed into a set
of branches as shown in Fig. 3(c), where we have plotted
the main body of the branches in blue and the end points
in green. From the results we can see these sulcal skeletons
capture the major folding patterns fairly well and provide a
compact summary of cortex geometry.

B. Lateral/medial side partition

In the second stage we partition the hemispheric cortical
surface M into lateral and medial parts with a graph-cut
algorithm. The resulting boundary between the lateral and
medial side is then used to compute a set of features with the
aim of providing intrinsic information about sulcal features in
addition to absolute coordinates (in millimeter) in the ICBM
space and improving the robustness to pose variations.

Before we apply the graph-cut algorithm, we first find a set
of seed points for both the lateral and medial side. Since M
is a left hemispheric surface in the ICBM space, where the
x-coordinate increases from left to right, we find a set of seed
points Xl for the lateral side as vertices visible from the left
side, i.e., the “x” direction, using the Z-buffer algorithm for
visible surface determination in computer graphics. Similarly,
the set of seed points Xm for the medial side are determined
as vertices visible from the right side, i.e., the “-x” direction.

Because there are hidden regions invisible from either the
left or right side, the two sets Xl and Xm do not form a
complete partition of the surface. To achieve this goal, we
minimize the following energy function to separate M into
the lateral side Rl and the medial side Rm:

E(Rl, Rm) =
∑

Vi∈Rl

dM(Xl,Vi) +
∑

Vi∈Rm

dM(Xm,Vi)

+ λ

K∑
i=1

∑
Vj∈N (Vi)

δ(Vi,Vj) (6)

where Vi and Vj are vertices on M, K is the total number
of vertices, dM(·, ·) denote the geodesic distance between two
point sets on M that can be computed numerically with the

fast marching algorithm on triangular meshes [39], and the
delta function δ is defined as one when Vi and Vj , a vertex in
its one-ring neighborhood N (V i), belong to different regions
and zero otherwise. The first two energy terms require R l and
Rm to be close to their seed points, the third energy term
provides regularization for boundary smoothness and the non-
negative parameter λ controls the weight of regularization. To
minimize the energy, the same graph-cut algorithm used in
stage one for partitioning M into sulcal and gyral regions is
applied to find the solution. Since this is a binary optimization
problem, the graph-cut technique ensures the global optimality
of the separation result [36], [37].

As an example, we show in Fig. 4 the partition results
for the surface in Fig. 3(a). Choosing a proper regularization
parameter ensures there will be no holes in R l and Rm

and their boundary is a simple curve. In our experience, the
parameter λ = 10 gives very robust performance. With this
parameter, our algorithm is able to successfully partition all
of the 40 cortical surfaces used our experiments into only two
connected components corresponding to the lateral and medial
parts.

Once we have the partition results Rl and Rm, we find
three boundary vertices, shown as red dots in Fig. 4, that
have the largest y-coordinate, the smallest y-coordinate, and
the smallest z-coordinate, respectively, and use them to di-
vide the boundary between R l and Rm into three curves
BC1, BC2, BC3 shown as the green, blue and cyan curve
in Fig. 4 (a) and (b). We have also plotted the three curves
from all 40 surfaces used in our experiments in Fig. 4(c).
We can see these curves are clustered fairly closely in the
ICBM space and this helps demonstrate the robustness of
our partition algorithm. Using these three curves, we can
compute the landmark context feature [40] defined at each
vertex as LC = [dBC1 , dBC2 , dBC3 ] to provide an intrinsic
characterization of locations on M, where dBCj (j = 1, 2, 3)
is the geodesic distance to the curve BCj . While the landmark
context feature is not necessarily unique over the surface,
it provides very intuitive characterizations of the intrinsic
locations of major sulci on the cortical surface using distances
to the three curves. For example, the distance to the curve
BC1 is useful in describing the almost parallel path to the
medial wall the SF sulcus usually takes. This distance is also
useful to describe the medial-to-lateral trend of the CS, PreCS,
and PostCS. The distance to the curve BC2 is valuable in
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(a)

(b)

(c)

Fig. 4. The result of partitioning the cortical surface in Fig. 3(a) into the
lateral(bright) and medial(dark) side. (a) The lateral view. (b) The medial
view. The boundary between the two regions is divided into three curves:
BC1(green), BC2 (blue), and BC3(cyan). (c) The landmark curves from 40
cortical surfaces.

characterizing the intrinsic location of the frontal part of the
SF, IF, ST sulcus and the sylvian fissure. With the distance to
the curve BC3, we can quantify effectively the almost parallel
relation between the ST sulcus and the sylvian fissure. In the
next stage, we will use both the ICBM coordinate and the
landmark context feature to characterize relative locations on
M for the learning algorithms.

C. Compute start/end points and route-control segments

By computing the skeleton of sulcal regions, we greatly
reduce the search range for the start point X s

i and end point
Xe

i of a sulcal curve Ci. Let us denote the set of end points
for the branches of sulcal skeletons, i.e., the green dots in Fig.

TABLE I

THE ADABOOST ALGORITHM [5].

Given training data: (x1, y1, w1
1), · · · , (xn, yn, w1

n) where xi are the
sample data, yi ∈ {−1, 1} are the corresponding class labels, and w1

i
are the initial weights.
For t = 1, · · · , T

• Train a weak classifier ht given the current weights.
• Compute the weighted error rate εt of the classifier ht.
• Update the weights:

wt+1
i =

wt
ie

−αtyiht(xi)

Zt

where αt = log((1−εt)/εt)/2 and Zt is a normalization constant
such that

∑n
i=1 wt+1

i = 1.
Output the final classifier H = sign(f) with the decision function f =∑T

t=1 αtht.

3(c), as A. For each branch of the skeleton, we also divide it
into �L/10� segments of equal length around 10mm, where
L is the length of the branch and �x� represents the largest
integer less than or equal to x. We denote the set of such
segments from all the branches as B. In this third stage of our
sample space generation algorithm, we use classifiers learned
from training data to pick out a set of candidate points from
the set A for Xs

i and Xe
i , and a set of segments from B, which

we denote as route-control segments, that help better control
the intermediate path the sample curves should follow from
Xs

i to Xe
i .

To train these classifiers, we derive training data from a
set of P cortical surfaces with manually traced sulci and use
AdaBoost [5] as our learning algorithm because it is easy to
implement, flexible to incorporate various features, and robust
to over fitting. As listed in Table I, the main idea of boosting
is to form a strong classifier by combining a series of weak
classifiers with their weights chosen adaptively based on their
classification performance. In order to train the classifier for
the start/end point of a sulcal curve Ci, we form the training
data as follows by using the start point of Ci as an example.
For each of the P cortical surfaces in the training data, we
compute the set A of end points of sulcal skeletons. On each
surface there is a manually labeled start point for the sulcal
curve Ci and we compute the distance between this point
and all points in A. For each point in A, if this distance is
less than 5mm, we assign the label +1. For all other points
in A, we assign a label −1. Combining all the results from
the P surfaces, we form the training data for the start point
of the sulcal curves Ci. The training data for its end point
can be formed similarly. The features we use in our learning
algorithm include the ICBM coordinate, the landmark context,
and their individual components. For 1D features, we learn a
decision stump as the weak classifier. For 3D features, we
learn a perceptron using the pocket algorithm with rachet [41]
as the weak classifier. Both the decision stump and perceptron
are linear classifiers in the form:

h(x) =
{

1 if μTx+ ξ > 0;
−1 else

(7)

where x is the feature in R
1 for the decision stump, and R

3 for
the perceptron. For the decision stump, (μ, ξ) are coefficients
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(a) (b) (c) (d)

Fig. 5. The process of sample space generation. (a) The candidate start(red) and end(green) points of the precentral sulcus, and its route-control segments
whose both ends are marked as yellow dots. (b) The sample curves generated with 30 random walks between a pair of start and end points of the precentral
sulcus. (c) The sample space of precentral sulcus as composed of curves connecting all the start and end points. (d) The sample spaces of all eight major
sulci in the graphical model of Fig. 1 are plotted with the same color map in Fig. 1.

of a 1D linear classifier. In the case of the perceptron, they
are coefficients of a 3D linear classifier. While the perceptron
seems sufficient for 3D features such as the ICBM coordinates
and landmark context, we have chosen to also include the deci-
sion stump for the individual components of these 3D features
because the training data is noisy and the 3D classifier may
not be as specific as the 1D classifier in learning information
that can be better captured by 1D features. So the decision
stump can be viewed as a robust version of the perceptron
useful to learn explicitly 1D information such as the distance
to the medial wall. The AdaBoost algorithm is then used to
selectively combine information from these features and form
the final classifier.

For each sulcus Ci, we also use AdaBoost to train a
classifier to pick out a set of route-control segments from
the set B that should be on the sample curves. For each of
the P cortical surface in the training data, we first compute
the set B of skeleton segments. For every segment in B, we
then compute its Hausdorff distance to the manually traced
curve on this surface. If the Hausdorff distance is less than
5mm, we assign a label +1 to this segment; otherwise, a
label −1 is assigned. Repeating the above procedure for all the
P cortical surfaces, we form the training data for the route-
control segments of Ci. For each segment, we compute the
mean and difference of the ICBM coordinates, the landmark
context features, and their individual components at its two
end points as the features used for classification. The same
learning algorithm described above is then used to learn the
classifier for route-control segments.

D. Candidate curve generation via random walks

In this fourth stage, we generate sample curves based on
random walks over a directed graph constructed from the
candidate start/end points and route-control segments for a
major sulcus Ci. Given a pair of candidate start point X s

i and
end point X e

i , we order all the route-control segments of C i

according to their geodesic distance to X s
i , which we denote

as RC = {Q1, Q2, · · · , QJ} and a segment Qj1 is closer to
Xs

i than Qj2 if j1 < j2. Similarly, we also order the two end
points of a segment Qj and denote them as Qs

j and Qe
j such

that dM(Xs
i , Q

s
j) ≤ dM(Xs

i , Q
e
j), where dM(·, ·) denotes the

geodesic distance between two points on M as in (6).

The directed attributed graph
−→
G = (

−→
V ,

−→
E ) for generating

sample curves from X s
i to Xe

i is composed of a set of nodes−→
V = {Xs

i , Q1, Q2, · · · , QJ , X
e
i } and a set of direct edges−→

E =
−→
E1

⋃−→
E2

⋃−→
E3. The set

−→
E1 = {−−−→Xs

i Qj|j = 1, 2, · · · , J}
are directed edges from X s

i to all the segments in RC and
their weights are defined as 1/dM(Xs

i , Q
s
j). The set

−→
E2 =

{−−−→QjX
e
i |j = 1, 2, · · · , J} are directed edges from all the

segments in RC to Xe
i and their weights are defined as

1/dM(Qe
j , X

e
i ). The set

−→
E3 = {−−−−→Qj1Qj2| if dM(Xs

i , Q
e
j1) <

dM(Xs
i , Q

s
j2), 1 ≤ j1, j2 ≤ J} are composed of directed

edges
−−−−→
Qj1Qj2 between segments in RC. To ensure there are

no loops in the graph, we require the end point of Q j1 to be
closer to Xs

i than the start point of Qj2. The weights for edges
in

−→
E3 are defined as 1/dM(Qe

j1, Q
s
j2).

To generate a sample curve, we perform a random walk
in

−→
G to find a path from X s

i to Xe
i . Starting from the node

Xs
i , we pick the next node by randomly choosing an edge

from all the direct edges starting from X s
i with a probability

in proportion to the weights of these edges. The process is
repeated until we reach the node X e

i . Because we have defined
the weights of edges inversely proportional to the geodesic
distance between neighboring nodes, edges connecting closer
nodes will have a higher chance of being visited in the random
walk. Since there are no loops in

−→
G and all the router-control

segments are connected to X s
i and Xe

i , any random walk
starting from X s

i is guaranteed to stop at X e
i . By repeating the

random walk multiple times, we can generate sample curves
covering various routes from the start point to the end point.
This is important as the major sulci are not necessarily the
shortest path from X s

i to Xe
i .

Suppose the path of the random walk in the graph
−→
G is

Xs
i → Qj1 → Qj2 → · · · → Qjn → Xe

i , we generate
the sample curve by connecting a series of curve segments:
(Xs

i , Q
s
j1) → Qj1 → (Qe

j1, Q
s
j2) → Qj2 → · · · → Qjn →

(Qe
jn, X

e
i ), where (·, ·) represents a weighted geodesic path

connecting two points on M. Because it is possible to jump
from a curve segment to a relatively far away curve segment
during the random walk, we need to design the weighted
geodesics to ensure the path connecting them passes through
sulcal regions whenever possible. Thus we define the weight
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function for computing the geodesic as

F = e−D (8)

where D is the distance transform of the sulcal skeletons, so
points closer to the skeleton will have higher speeds. To find
each path numerically, we use the fast marching algorithm on
triangular meshes [39] to solve the Eikonal equation on M:

∇dwF = 1 (9)

and trace backward along the gradient direction of dw to find
the geodesic path.

As an example, we show in Fig. 5(b) the sample curves
between a start point (the red dot) and end point (the green
dot) generated with random walks on the graph constructed
with the route-control segments shown in Fig. 5(a). For each
pair of start/end points, we typically generate 30 candidate
curves in our experiments. In this case, there are 5 start and
5 end points, so we obtain a sample space of 750 candidate
curves as shown in Fig. 5(c). Similarly, we can generate the
sample space for other major sulci of interest. The sample
spaces of the eight sulci in the graphical model of Fig. 1
are plotted in Fig. 5(d) with the color map in Fig. 1. In
this case, the usefulness of the random walking process can
be best illustrated in the sample space generated for the IF
sulcus as the shortest path is clearly not the most desirable.
It is clear that most of the sample curves shown in Fig.
5(d) are not neuro-biologically valid sulci. There are also
overlaps between candidate curves of different sulci as it is
possible for some curve segments being classified as route-
control segments by multiple sulci. To ensure that the belief
propagation algorithm can handle these cases correctly, we
learn the potential functions of the graphical model from
training data to incorporate prior knowledge about individual
and neighboring sulci.

IV. LEARNING POTENTIAL FUNCTIONS

In this section, we describe our learning-based approach to
construct both the local evidence functions φ i and compatibil-
ity functions ψi,j over the sample spaces of sulcal curves. For
each potential function, we compute a large set of features
and let the boosting technique automatically pick out the
most informative features to model the individual and pairwise
shape priors. Using the classifier learned by AdaBoost, we then
define the potential function based on its connection to logistic
regression [42].

For both the local evidence functions and compatibility
functions, we assume a training data set of P cortical surfaces
in the ICBM space with manually labeled sulcal lines. For
each surface, we compute the sample space Si for each node
Ci in the graphical model.

A. Local evidence functions

To learn the local evidence function φi for a sulcus Ci, we
form its training data as follows. We assign all the manually
traced curves on the P surfaces the label +1. For a curve from
Si of each surface, we assign it the label −1 if more than 50%

of the points on the curve have a minimum distance of 10mm
to the corresponding manually traced sulcus.

To characterize these curves, we use the Haar wavelet
transform to compute a set of multi-scale features. More
specifically, we uniformly sample each curve into LHarr =
32 points. The Haar wavelet transform is then computed
for the ICBM coordinates, landmark context features, and
their individual components defined at these uniformly sample
points. As a result, we have 2LHaar 3D features from the
ICBM coordinates and landmark context features, and 6LHaar

1D features from their individual components. This large set
of features provides a multi-scale description of the location
and orientation of the curves.

Using these features, the AdaBoost algorithm combines a
series of weak classifiers to form a final decision function for
a curve Ci ∈ Si:

f(Ci) =
T∑

t=1

αtht(Ci) (10)

where ht is the t-th weak classifier, which is a decision stump
for 1D features and perceptron for 3D features, α t is the
weight for this classifier, and T is the total number of weak
classifiers. It is shown in [42] that AdaBoost approximates
logistic regression and the learned decision function can be
used to estimate the probability of a class label, thus we follow
[42] and define the local evidence function as

φi(Ci) =
e2f(Ci)

1 + e2f(Ci)
∀Ci ∈ Si. (11)

The range of the local evidence function is between (0, 1)
and it approaches 1 when f(Ci) is large for a curve Ci ∈ Si,
which suggests this curve bears strong similarity to manually
traced sulcal lines in the training data. On the other hand,
it approaches zero for curves with negative decision function
values.

B. Compatibility functions

For two nodes Ci and Cj in the graphical model G, we
follow a similar process to learn their compatibility function
ψi,j , but with a different set of features to capture their
joint shape priors. Given a cortical surface, we generate
the sample spaces Si and Sj for these two sulci, and the
value ψi,j(Ci, Cj) measures how compatible a pair of curves
(Ci, Cj) ∈ Si×Sj being the two major sulci. The training data
to learn ψi,j thus are also composed of curve pairs (Ci, Cj)
that we form as follows. For the P pairs of manually traced
sulci for Ci and Cj on the P surfaces in the training data,
we assign a label +1. For each of the P surface, we compute
the sample space Si and Sj and assign a label −1 for the set
of curve pairs (Ci, Cj) generated by associating each curve
Ci ∈ Si with a randomly picked curve Cj ∈ Sj with the
goal of representing possible cases of incompatible curves. By
repeating the above procedure for each edge in the graphical
model G, we can generate different training data for other
neighboring sulci.

As inputs to the weak classifiers used in AdaBoost, we
design a set of multi-scale features to model the joint con-
figuration for each pair of curves (Ci, Cj). Let Υ denote the
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Fig. 6. The multilevel decomposition of a curve. (a) η = 0. (b) η = 1. (c)
η = 2. (d) η = 3. (e) The original curve.

maximum number of levels we want to compute the features.
We re-sample each curve Ci and Cj into 2Υ+1 equally spaced
points. Let p0, p1, · · · , p2Υ be the 2Υ+1 points on Ci, we then
approximate it with a set of 2η straight line segments at the
level 0 ≤ η ≤ Υ:

MC(η) = {p
k2Υ−η p(k+1)2Υ−η |0 ≤ k < 2η}, (12)

where p
k2Υ−η p(k+1)2Υ−η denote the line segment connecting

the two points p
k2Υ−η and p

(k+1)2Υ−η . As shown in Fig. 6, line
segments at the coarse scale captures the global trend of each
curve, while the line segments at finer scales provide more
local information. Similarly, the curve Cj is also decomposed
into the same number of levels and we use the relation between
line segments from these two curves to characterize their
configuration at each level. More specifically, for each line
segment LS1 of Ci and LS2 of Cj at a level η, we compute
the angle between them and the shortest displacement vector
from points on LS1 to LS2. Repeat this procedure for all
levels, we obtain a set of multi-scale features to describe the
relative position of curves. The AdaBoost algorithm is then
used to learn a strong classifier for the curve pair (C i, Cj).
Similar to the definition of local evidence functions, we define
the compatibility function between Ci and Cj as:

ψi,j(Ci, Cj) =
e2f(Ci,Cj)

1 + e2f(Ci,Cj)
∀(Ci, Cj) ∈ Si × Sj . (13)

where f(·, ·) is the decision function learned with AdaBoost
using features described above.

Applying the above learning algorithms to each node and
every pair of neighboring sulci in a graphical model, we can
learn all the local evidence and compatibility functions, which
complete the construction of the graphical model. After that,
the belief propagation algorithm can be applied to detect sulci
jointly on cortical surfaces from the sample spaces of major
sulci.

V. EXPERIMENTAL RESULTS

In this section, we present experimental results to demon-
strate our joint sulcal detection algorithm on a data set of
40 left hemispheric surfaces. These surfaces represent the
boundary between the gray matter and cerebrospinal fluid
(CSF), and were generated from MRI images in the ICBM
space using a surface extraction algorithm [43] and they all
have genus zero topology. While these surfaces may not

capture the deepest parts of sulcal regions, the regularity
they share makes it easier to compare across population and
perform group studies. More details on the MRI imaging and
post-processing protocols can be found in [44]. A set of eight
major sulci were manually labeled on each surface for training
and validation, which include the central sulcus (CS), pre-
central sulcus (PreCS), post-central sulcus (PostCS), superior-
frontal sulcus (SF), inferior-frontal sulcus (IF), intra-parietal
sulcus (IP), sylvian fissure (Sylvian), and the superior-temporal
sulcus (ST).

In our experiments, we use the graphical model in Fig.
1 to demonstrate the joint detection method. As a common
practice in graph-based estimation, belief propagation is also
often applied to graphs with loops. This may allow us to
incorporate more neighboring priors between sulcal curves,
but no theoretical guarantee of global optimality exists for
graphs with loops. So there is a tradeoff between using
more complicated models and the tractability in obtaining
the optimal solution. We have chosen to use tree-structured
graphical models in our experiments as this allows us to focus
more on the construction of sample spaces of candidate curves
and shape priors.

In the first experiment, we learn from a set of training data
the classifiers used in sample space generation and the poten-
tial functions in the graphical model, and then demonstrate
the sulcal detection algorithm on surfaces in the training data.
After that we apply the joint detection algorithm to a set of
testing data and validate its performance quantitatively. In our
third experiment, we demonstrate the advantage of the joint
detection approach by comparing with results obtained without
using the graphical model.

A. Graphical model training

Among the 40 surfaces in our data we randomly pick 20
surfaces, together with their manually traced sulci, as the
training data. As an illustration, we show three examples
from the training data in Fig. 7 (a), (b), and (c). The other
20 surfaces are used as the testing data to evaluate the
performance of the joint sulcal detection algorithm.

In this learning stage, we first compute the sulcal skele-
tons for all the surfaces in the training data. After that
the landmark context features derived from the boundary of
the lateral/medial partition are computed with the graph-cut
approach developed in section III-B. Using results obtained in
these two steps, the AdaBoost algorithm is applied to learn the
classifiers for the start/end points and route-control segments
of each sulcal curve as described in section III-C. On every
surface, we then run the random-walk algorithm in section III-
D for each sulcal curve, or node of the graphical model, to
generate its sample space of candidate curves. For the surfaces
in Fig. 7 (a), (b), and (c), the corresponding sample spaces
of the eight major sulci are plotted in Fig. 7 (d), (e), and
(f). Finally the potential functions in the graphical model are
learned following the procedure in section IV.

As a first step to examine the graphical model we learned
from training data, we perform MAP estimation on the sam-
ple spaces of each surface in training data using the belief
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 7. Three surfaces in the training data. (a)(b)(c) Cortical surfaces with manually traced sulcal curves. (d)(e)(f) Sample spaces of the eight sulci. (g)(h)(i)
Automatically detected sulcal curves plotted on surfaces. (All curves are plotted with the color map in Fig. 1.)

TABLE II

QUANTILE STATISTICS OF dam AND dma FROM SULCI DETECTED IN TRAINING DATA. ALL DISTANCES ARE IN MILLIMETERS.

CS PreCS PostCS SF IF IP Sylvian ST

dam

50th percentile 0.70 1.05 1.01 1.24 1.15 0.97 0.93 1.04
70th percentile 0.98 1.91 1.86 2.25 3.28 2.01 1.58 1.94
90th percentile 1.66 6.35 9.76 8.92 8.26 6.87 4.60 8.54

dma

50th percentile 0.75 1.18 1.14 1.38 1.31 1.12 1.05 1.26
70th percentile 1.14 2.30 2.19 2.55 3.34 2.18 1.95 2.56
90th percentile 2.09 8.15 12.75 9.29 8.62 7.35 6.62 11.21

propagation algorithm described in section II. By presenting
results from the training data, we demonstrate the ability of
our learning-based approach in capturing shape priors from
manual tracing. These results will also be used to compare
with results from the testing data to illustrate the generalization
ability of our method. For the three examples in Fig. 7, we
have plotted in Fig. 7 (g), (h), and (i) the detected sulci.
Compared with the manually traced curves in Fig. 7 (a), (b),
and (c), we can see the detected sulci travel mostly along the
same routes through sulcal regions. The geometric relations of
neighboring sulci, such as the junctions between the IF and
PreCS, are also correctly followed because both angle and
displacement features are used in modeling the compatibility
functions of these neighboring sulci.

Besides the visual results, we next present more detailed

quantitative measures to compare automatically detected sulci
with manual results. In previous works [19], [24], [27], statis-
tics such as the mean and standard deviation of distances
between points on detected sulci and manually traced curves
were used. We extend these measures and use more detailed
quantile statistics in our experiments. With quantile statistics,
we can characterize how well the detected curves align with
the main body of the major sulci at different levels, which
maybe anatomically more reasonable considering the difficulty
and the resulting variability in deciding the starting and ending
parts of sulcal curves even for human tracers.

To compute the quantile statistics, we first calculate two
distances between automatically detected curves and manual
results. For each point on an automatically detected curve, we
compute its minimum distance to the corresponding manually
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 8. Sulcal detection results on three cortical surfaces in the testing data.(a)(b)(c) Cortical surfaces with manually traced sulci. (d)(e)(f) Sample spaces of
the eight sulci. (g)(h)(i) Automatically detected sulcal curves plotted on surfaces. (All curves are plotted with the color map in Fig. 1.)

TABLE III

QUANTILE STATISTICS OF dam AND dma FROM SULCI DETECTED JOINTLY IN TESTING DATA. ALL DISTANCES ARE IN MILLIMETERS.

CS PreCS PostCS SF IF IP Sylvian ST

dam

50th percentile 0.70 1.23 1.05 1.46 1.55 0.92 1.34 1.33
70th percentile 0.97 2.42 2.11 3.25 3.99 1.74 2.84 2.75
90th percentile 1.70 8.07 9.32 8.98 9.17 8.60 7.36 7.64

dma

50th percentile 0.74 1.44 1.23 1.63 1.97 1.12 1.77 1.66
70th percentile 1.14 3.32 2.93 3.38 5.16 2.24 4.13 4.19
90th percentile 2.38 9.06 10.77 9.44 11.50 11.05 11.02 10.75

traced curve and denote this kind of distance as dam. For
each point on the manually traced curve, we also compute
its minimum distance to the automatically detected curve and
denote this distance as dma. For each major sulcus, we use the
20 pairs of automatically detected and manually traced curves
on all the surfaces in training data to compute the quantile
statistics of dam and dma at the 50th, 70th, and 90th percentile.

The results for all eight sulci are listed in Table II. Each
distance value in the table represents a cut-point on the
cumulative distribution function (CDF) of either dam or dma

for a certain sulcus. For example, the last number in the
column of central sulcus means that 90% of points on the
manually traced curve have a distance dma ≤ 2.09mm to the
automatically detected curve. For all eight sulci, we can see
the 50th percentile of both dam and dma are less than 1.5mm,
and the 70th percentile are less than 3.5mm. Even for highly

variable sulci such as PostCS and IF, the 90th percentile of
both dam and dma are around 10mm. So the results in Table
II show that very good alignment has been achieved between
the main body of automatically detected curves and manually
traced ones.

B. Validation with testing data

In our previous experiment, we demonstrated very good
sulcal detection results in Fig. 7 and Table II. For practical
purposes, however, it is more important to examine the gen-
eralization abilities of the algorithm, i.e., its performance on
testing data. In this experiment, we apply our algorithm to
the 20 surfaces in the testing data and evaluate the results
quantitatively with manually labeled sulcal lines.

There are two main steps in applying our algorithm to
testing data. In the first step, we generate a sample space of
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(a) (b) (c)

Fig. 9. Sulcal detection results without using graphical models. (All curves are plotted with the color map in Fig. 1.)

TABLE IV

QUANTILE STATISTICS OF dam AND dma FROM SULCI DETECTED SEPARATELY IN TESTING DATA. ALL DISTANCES ARE IN MILLIMETERS.

CS PreCS PostCS SF IF IP Sylvian ST

dam

50th percentile 0.69 1.23 1.56 1.71 2.34 0.88 1.33 1.34
70th percentile 0.99 2.96 7.52 4.87 7.29 1.65 2.86 3.24
90th percentile 2.04 10.32 13.68 11.13 11.56 10.59 9.15 8.63

dma

50th percentile 0.74 1.54 1.90 1.83 2.42 1.13 1.71 1.78
70th percentile 1.15 4.01 9.02 4.57 8.46 2.29 4.27 4.87
90th percentile 2.82 10.95 16.42 11.10 13.52 12.61 11.79 11.65

candidate curves for each sulcus on a cortical surface. During
this stage, the classifier for start/end points and route-control
segments learned from training data are used. After that, belief
propagation is applied to pick out the best combination of
sulcal curves from their sample spaces. Using the classifiers
learned from training data, there are very few parameters to
tune when we apply the two steps to the testing data. The
only parameter we need to adjust is the number of sample
curves to generate for each pair of start/end points of a sulcal
curve at the first step. When we increase this number, we get
larger sample spaces covering more routes a sulcal curve can
follow, but it also increases the computational cost because
more random walks need to be performed. In our experiments,
we set this parameter to 30 curves as in the example shown in
section III-D. This usually generates a sample space containing
around 1000 curves for each major sulcus. No significant
gains are observed if we further increase this parameter. As an
illustration, we visualize the results from these two steps on
three surfaces in the testing data as shown in Fig. 8(a), (b), and
(c). The sample spaces generated for each of the eight major
sulci are plotted on the surfaces in Fig. 8(d), (e), and (f) using
the same color map in Fig. 1. The detected sulcal curves are
plotted on the surfaces in Fig. 8(g), (h), and (i). By comparing
the automatically detected sulci with manually traced curves
in Fig. 8(a), (b), and (c), we can see the automatically detected
curves overall capture the main body of the sulci and agree
with manual results very well.

To measure quantitatively the performance of our sulcal
detection algorithm on testing data, we compute the same
statistics as in the first experiment. For each major sulcus, we
use the 20 pairs of automatically detected and manually traced
curves in testing data to calculate the quantile statistics of dam

and dma at the 50th, 70th, and 90th percentile. The results
for the eight sulci are listed in Table III. For all eight sulci,
the 50th percentile of both dam and dma are less than 2mm,
and the 70th percentile are less than or around 5mm. Besides

the central sulcus, the 90th percentile of dam and dma are
around 10mm, which is slightly worse than the performance
on training data and this is mainly due to the high variability
in the starting and ending parts of sulcal curves. One good
example in illustrating this difficulty is the superior end of
the PostCS. Following the tracing protocol [28], the manual
tracer is able to consistently pick the posterior route whenever
there are more than one choices in determining this part of
the PostCS such as the example in Fig. 7(a). Our automated
approach, however, may sometimes get confused and follow
a posterior route that actually jumps across a gyrus as in
Fig. 8(h). Another example is the difficulty in capturing the
frontal part of the IF sulcus that usually bends backward.
This is mainly because that the IF sulcus does not necessarily
follow a weighted geodesic that we use to generate candidate
curves. These kinds of situations contribute to the largest errors
in the quantile statistics and point out directions of future
improvements.

Overall the results in Table III show that our algorithm
generalizes very well on testing data and the detected curves
are able to capture the main body of major sulci accurately,
which is especially encouraging for those sulci (PostCS, IF)
that are highly variable.

C. Comparison with sulci detected separately

In this experiment, we compare the joint detection results
in section V-B with sulci detected separately without taking
into account pairwise priors between neighboring sulci, which
is realized by choosing the curve in each sample space that
maximizes the associated local evidence function.

For the three surfaces in Fig. 8(a), (b), and (c), we plot
the independently detected sulci in Fig. 9 (a), (b), and (c),
respectively. To highlight the differences between the detection
results in Fig. 8 and Fig. 9, we have annotated with a dotted
circle to identify one place on each surface in Fig. 9 where the
independently detected curve failed to locate the corresponding
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sulcus accurately. On the contrary, these kinds of mistakes
were avoided in the results shown in Fig. 8(g), (h), and (i)
because pairwise priors are incorporated. This demonstrates
the value of the compatibility functions in improving sulci
detection with joint shape priors.

Following the quantitative evaluation procedure in section
V-B, we also compare independently detected sulci with man-
ually annotated sulcal curves on the 20 surfaces in our testing
data by computing the same quantile statistics. The results are
listed in Table IV. From the numbers in Table III and IV, we
can clearly see the advantage of the joint detection approach
as it performs better on 40 of the 48 distance measures. For the
6 measures that the independent detection approach generated
better results, it outperforms the joint detection method only
by a slight margin of less than 0.1mm. The performance gain
with the use of the graphical model is especially significant for
more variable sulci such as the PostCS and IF as demonstrated
by their quantile statistics at the 70th percentile for both dam

and dma in Table III and IV.

VI. DISCUSSION AND CONCLUSIONS

In this paper, we proposed a joint detection framework for
the automated labeling of major sulci on cortical surfaces. By
generating sample spaces of candidate curves for the major
sulci, we are able to convert sulcal detection into a tractable
inference problem over discrete random variables. To capture
both individual and joint shape priors of sulcal curves, we
use graphical models in our framework to encode Markovian
relations between neighboring sulci and learn the potential
functions automatically with AdaBoost.

With the aim of providing stable landmark curves for the
mapping of cortical surfaces across population, we represent
each major sulcus as a continuous curve in our work, which
is useful for the analysis of anatomical quantities defined on
cortical surfaces such as gray matter densities. On the other
hand, this assumption simplifies the interruptions of the sulci
over gyral regions that exist naturally. So when the sulcal
anatomy is the target of analysis, it might be beneficial to
study the detailed configuration of sulcal regions directly.

In our experiments, we demonstrated the training of a
graphical model and applied it to automatically detect a set
of eight major sulci on hemispheric cortical surfaces. These
sulci are on the lateral surface of the cortex, but our method
is general and can also be applied to detect other major sulci
on the medial surface such as the calcarine sulcus. For the
detection of secondary sulci that may or may not be present,
for example the secondary cingulate sulcus, however, we
cannot apply our method directly. A model selection process
might be necessary to first determine the proper graphical
model to use and then apply the joint detection algorithm we
develop here.

As noted in our experiments, there are still difficulties in
accurately detecting sulcal lines that tend to bend backward.
To address this problem, we will improve in the future work
the sample space generation algorithm for these sulci to
ensure their sample spaces contain valid candidate curves. For
example, we can train an additional classifier for the IF sulcus

to detect a route-control segment corresponding to the most
frontal part of the sulcal line and use it to capture the bending
between the start and end points.

A large set of features derived from the ICBM coordi-
nates and landmark context features have been combined
with AdaBoost to model shape priors of sulcal curves in
our current work. The ability of this approach in modeling
joint shape priors was demonstrated via comparisons with
results detected without using graphical models. An interesting
direction of future research is to include a feature selection
process [45], [46] in our algorithm as many features contain
redundant information. This may improve the effectiveness
of our model. For example, this process could make the
compatibility function of the PostCS and IP sulcus more
sensitive to the spatial configuration between the closest line
segments in their multilevel decompositions and help eliminate
artifacts such as the slight overlap of these two sulcal curves
in Fig. 8(h).

We have chosen to use tree-structured graphical models
in our experiments because the belief propagation algorithm
can efficiently compute the globally optimal solution on such
models. This is, however, at the expense of leaving out
potentially useful neighboring priors. To incorporate more
joint shape priors, we will study the use of graphical models
with loops in our future work. The same learning process
developed here can still be used to construct the sample spaces
of candidate curves and potential functions on such models,
but the belief propagation algorithm has to be used with
caution as there is no guarantee of global optimality anymore.
More sophisticated optimization strategies such as the tree-
reweighted message passing algorithm [47] and the primal-
dual graph cut algorithm [48] will be investigated for MAP
estimation on these graphical models with loops.
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3D magnetic resonance images to structural representations of the
cortex topography using topology preserving deformations,” Journal of
Mathematical Imaging and Vision, vol. 5, no. 4, pp. 297–318, 1995.

[17] G. Lohmann, “Extracting line representations of sulcal and gyral patterns
in MR images of the human brain,” IEEE Trans. Med. Imag., vol. 17,
no. 6, pp. 1040–1048, 1998.

[18] M. Vaillant and C. Davatzikos, “Finding parametric representations of
the cortical sulci using an active contour model,” Med. Image. Anal.,
vol. 1, no. 4, pp. 295–315, 1996.

[19] G. Goualher, E. Procyk, D. Collins, R. Venugopal, C. Barillot, and
A. Evans, “Automated extraction and variability analysis of sulcal
neuroanatomy,” IEEE Trans. Med. Imag., vol. 18, no. 3, pp. 206–217,
1999.

[20] Y. Zhou, P. M. Thompson, and A. W. Toga, “Extracting and representing
the cortical sulci,” IEEE Computer Graphics and Applications, vol. 19,
no. 3, pp. 49–55, 1999.

[21] X. Zeng, L. Staib, R. Schultz, H. Tagare, L. Win, and J. Duncan, “A
new approach to 3D sulcal ribbon finding from MR images,” in Proc.
MICCAI, 1999, pp. 148–157.

[22] T. Cootes, C. Taylor, D. Cooper, and J. Graham, “Active shape models-
their training and application,” Computer Vision and Image Understand-
ing, vol. 61, no. 1, pp. 38–59, 1995.

[23] G. Lohmann and D. Cramon, “Automatic labelling of the human cortical
surface using sulcal basins,” Med. Image. Anal., vol. 4, pp. 179–188,
2000.

[24] X. Tao, J. Prince, and C. Davatzikos, “Using a statistical shape model
to extract sulcal curves on the outer cortex of the human brain,” IEEE
Trans. Med. Imag., vol. 21, no. 5, pp. 513–524, 2002.

[25] D. Rivière, J.-F. Mangin, D. Papadopoulos-Orfanos, J. Martinez,
V. Frouin, and J. Régis, “Automatic recognition of cortical sulci of the
human brain using a congregation of neural networks,” Med. Image.
Anal., vol. 6, pp. 77–92, 2002.

[26] Z. Tu, “Probabilistic boosting-tree: learning discriminative models for
classification, recognition, and clustering,” in Proc. ICCV, vol. 2, 2005,
pp. 1589– 1596.

[27] Z. Tu, S. Zheng, A. Yuille, A. Reiss, R. A. Dutton, A. Lee, A. Galaburda,
I. Dinov, P. Thompson, and A. Toga, “Automated extraction of the
cortical sulci based on a supervised learning approach,” IEEE Trans.
Med. Imag., vol. 26, pp. 541–552, 2007.

[28] [Online]. Available: http://www.loni.ucla.edu/∼esowell/edevel/new
sulcvar.html

[29] S. M. Aji and R. J. McEliece, “The generalized distributive law,” IEEE
Trans. Info. Theory, vol. 46, pp. 325–343, 2000.

[30] S. M. Aji, G. Horn, R. J. McEliece, and M. Xu, “Iterative min-
sum decoding of tail-biting codes,” in Proc. IEEE Information Theory
Workshop, 1998, pp. 68–69.

[31] W. T. Freeman and E. Pasztor, “Learning to estimate scenes from
images,” in Proc. Neural Information Processing Systems (NIPS), vol. 2,
1998, pp. 775–781.

[32] A. P. Dawid, “Applications of a general propagation for probabilistic
expert systems,” Statistics and Computing, vol. 2, pp. 25–36, 1992.

[33] M. Wainwright, T. Jaakkola, and A. Willsky, “Tree consistency and
bounds on the performance of the max-product algorithm and its
generalizations,” Statistics and Computing, pp. 143–166, 2004.

[34] J. C. Mazziotta, A. W. Toga, A. C. Evans, P. T. F. na d J. Lancaster,
K. Zilles, R. P. Woods, T. Paus, G. Simpson, B. Pike, C. J. Holmes, D. L.
Collins, P. M. Thompson, D. MacDonald, T. Schormann, K. Amunts,
N. Palomero-Gallagher, L. Parsons, K. L. Narr, and N. Kabani, “A prob-
abilistic atlas and reference system for the human brain: international
consortium for brain mapping,” Philos. Trans. R. Soc. Lond. B. Biol.
Sci., vol. 356, pp. 1293–1322, 2001.

[35] Y. Shi, P. Thompson, I. Dinov, and A. Toga, “Hamilton-Jacobi skeleton
on cortical surfaces,” IEEE Trans. Med. Imag., vol. 27, no. 5, pp. 664–
673, 2008.

[36] Y. Boykov and M. P. Jolly, “Interactive graph cuts for optimal boundary
& region segmentation of objects in N-D images,” in Proc. ICCV, vol. I,
2001, pp. 105–112.

[37] Y. Boykov and V. Kolmogorov, “An experimental comparison of Min-
Cut/Max-Flow algorithms for energy minimization in vision,” IEEE
Trans. Pattern Anal. Machine Intell., vol. 26, no. 9, pp. 1124–1137,
Sept 2004.

[38] K. Siddiqi, S. Bouix, A. Tannebaum, and S. Zuker, “Hamilton-Jacobi
skeletons,” Int’l Journal of Computer Vision, vol. 48, no. 3, pp. 215–231,
2002.

[39] R. Kimmel and J. A. Sethian, “Computing geodesic paths on manifolds,”
Proc. Natl. Acad. Sci. USA, vol. 95, no. 15, pp. 8431–8435, 1998.

[40] Y. Shi, P. M. Thompson, I. Dinov, S. Osher, and A. W. Toga, “Direct
cortical mapping via solving partial differential equations on implicit
surfaces,” Med. Image. Anal., vol. 11, no. 3, pp. 207–223, 2007.

[41] S. Gallant, “Perceptron-based learning algorithms,” IEEE Trans. Neural
Networks, vol. 1, no. 2, pp. 179–191, 1990.

[42] J. Friedman, T. Hastie, and R. Tibshirani, “Additive logistic regression:
a statistical view of boosting,” Ann. Statist., vol. 28, no. 2, pp. 337–407,
2000.

[43] D. MacDonald, “A method for identifying geometrically simple surfaces
from threee dimensional images,” Ph.D. dissertation, McGill Univ.,
Canada, 1998.

[44] P. M. Thompson, A. D. Lee, R. A. Dutton, J. A. Geaga, K. M. Hayashi,
M. A. Eckert, U. Bellugi, A. M. Galaburda, J. R. Korenberg, D. L.
Mills, A. W. Toga, and A. L. Reiss, “Abnormal cortical complexity
and thickness profiles mapped in Williams syndrome,” J. Neuroscience,
vol. 25, no. 16, pp. 4146–4158, 2005.

[45] I. Guyon and A. Elisseeff, “An introduction to variable and feature
selection,” Journal of Machine Learning Research, vol. 3, pp. 1157–
1182, 2003.

[46] H. Peng, F. Long, and C. Ding, “Feature selection based on mu-
tual information: criteria of max-dependency, max-relevance, and min-
redundancy,” IEEE Trans. Pattern Anal. Machine Intell., vol. 27, no. 8,
pp. 1226–1238, 2005.

[47] M. J. Wainwright, T. S. Jaakkola, and A. S. Willsky, “MAP estimation
via agreement on trees: message-passing and linear programming,” IEEE
Trans. Inf. Theory, vol. 51, no. 11, pp. 3697–3717, 2005.

[48] N. Komodakis and G. Tziritas, “Approximate labeling via graph cuts
based on linear programming,” IEEE Trans. Pattern Anal. Machine
Intell., vol. 29, no. 8, pp. 1436–1453, 2007.


