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Abstract. We propose in this work a novel variational method for com-
puting maps between surfaces by combining informative geometric fea-
tures and regularizing forces including inverse consistency and harmonic
energy. To tackle the ambiguity in defining homologous points on smooth
surfaces, we design feature functions in the data term based on the Reeb
graph of the Laplace-Beltrami eigenfunctions to quantitatively describe
the global geometry of elongated anatomical structures. For inverse con-
sistency and robustness, our method computes simultaneously the for-
ward and backward map by iteratively solving partial differential equa-
tions (PDEs) on the surfaces. In our experiments, we successfully mapped
890 hippocampal surfaces and report statistically significant maps of at-
rophy rates between normal controls and patients with mild cognitive
impairment (MCI) and Alzheimer’s disease (AD).

1 Introduction

Surface mapping is an important problem in medical image analysis with appli-
cations in population studies[1] and the creation of 3D shape prior models[2].
While significant progresses have been made with the development of various
techniques[3–9], most of them focus heavily on the regularization part of the
problem. The lack of informative data terms makes it still a challenging prob-
lem to resolve the ambiguity in defining homologous points on smooth surfaces.
To this end we propose in this paper a novel variational framework to compute
maps directly between surfaces. By combining data terms from Laplace-Beltrami
eigen-features and regularizing forces from inverse consistency and harmonic
energy, our method can generate robust and high quality maps for a class of
subcortical structures with clinical significance.

Many interesting techniques have been proposed in previous work to solve
various surface mapping problems. A popular approach is to first map the sur-
face onto the sphere and then solve the registration problem in this canonical
domain [5–7, 9]. By viewing the surface as a subset of R

3, successful image regis-
tration techniques were applied to compute surface maps with possible landmark
constraints [3, 4, 8]. Landmark curves detected by shape context features were
used to guide the mapping of hippocampal surfaces[10]. The medial model pro-
vides a compact surface representation and is also very useful to construct maps
between surfaces[11–13].
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We propose in this work a variational approach to automatically compute both
the forward and backward maps between two surfaces with inverse consistency.
An important feature of our method is that we use the Reeb graph of the Laplace-
Beltrami eigenfunctions to define intrinsic features for the data fidelity term
in our energy function. These features provide quantitative descriptions of the
salient geometry shared by elongated structures such as the hippocampus and
significantly remove the ambiguity in finding correspondences for such surfaces.
Another interesting feature of our method is that we incorporate both inverse
consistency[14] and harmonic energy [15] as the regularization term to improve
the quality of maps. The harmonic energy encourages the smoothness in the
maps and the inverse consistency term helps reduce area distortions. In our
experiments, we perform extensive tests to demonstrate the quality of the maps
generated by our method. We also demonstrate the robustness of our method
with its successful mapping of 890 hippocampal surfaces and report statistically
significant results.

The rest of the paper is organized as follows. In section 2, we develop the
variational framework that combines data terms of intrinsic features and reg-
ularization terms including both inverse consistency and harmonic energy. We
propose the Laplace-Beltrami eigen-features for the modeling of elongated struc-
tures such as hippocampus in section 3. Experimental results are presented in
section 4 to demonstrate the quality and robustness of our mapping algorithm.
Finally conclusions and future work are discussed in section 5.

2 A Variational Framework

In this section, we propose a variational framework for the direct mapping of
surfaces. Let (M1, g) and (M2, h) be two Riemann surfaces with their metric
tensor g and h. To obtain inverse consistency, we compute two maps jointly in
our method. We denote u1 : M1 → M2 as the map from M1 to M2, and
u2 : M2 → M1 the map from M2 to M1. We also assume there are L feature
functions defined on each surface and denote ξj

1 : M1 → R and ξj
2 : M2 →

R(1 ≤ j ≤ L) as the j-th feature function on M1 and M2, respectively.
In our variational framework, the maps are computed as the minimizer of the

following energy function:

E = ED + EIC + EH . (1)

There are three terms in the energy function and all of them are symmetric with
respect to M1 and M2. We call the first energy ED as the data fidelity term
and it is defined as:

ED =
L∑

j=1

αj
D

[∫

M1

(ξj
1 − ξj

2 ◦ u1)2dM1 +
∫

M2

(ξj
2 − ξj

1 ◦ u2)2dM2

]
. (2)

This energy penalizes the mismatch of feature functions induced by the two
maps, and the parameters αj

D are used to assign proper weights for different
feature functions.
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The other two terms are for regularization, where EIC encourages inverse
consistency and EH is the harmonic energy and it ensures the smoothness in
the maps. Let I denote the identity function such that I(x) = x. We define the
energy EIC as:

EIC = αIC

[∫

M1

(I − u2 ◦ u1)2dM1 +
∫

M2

(I − u1 ◦ u2)2dM2

]
(3)

where αIC is a regularization parameter. For inverse consistency, this energy
penalizes the difference between the identity map I and the composition of the
two maps u2◦u1 and u1◦u2. The harmonic energy term EH is defined as [15, 16]:

EH = αH

[∫

M1

‖ Ju1 ‖2 dM1 +
∫

M2

‖ Ju2 ‖2 dM2

]
(4)

where Ju1 and Ju2 are the Jacobian of the two maps defined on the surfaces,
and αH is the regularization parameter for this term.

To minimize the energy function with respect to the maps u1 and u2, we derive
their gradient flows and compute them iteratively via the solution of these partial
differential equations(PDEs) on the two surfaces M1 and M2. For the energy
ED, the gradient flows of u1 and u2 are:

∂ED

∂u1
= −2

L∑

j=1

αj
D(ξj

1 − ξj
2 ◦ u1)∇M2ξ

j
2(u1)

∂ED

∂u2
= −2

L∑

j=1

αj
D(ξj

2 − ξj
1 ◦ u2)∇M1ξ

j
1(u2) (5)

where ∇M1 and ∇M2 denote the intrinsic gradient on the surfaces. For the
energy EIC , the gradient flows are:

EIC

∂u1
= −2αIC

[
JT

u2
(I − u2 ◦ u1) + (u−1

2 − u1)
∣∣Ju−1

2

∣∣
]

EIC

∂u2
= −2αIC

[
JT

u1
(I − u1 ◦ u2) + (u−1

1 − u2)
∣∣Ju−1

1

∣∣
]

(6)

where u−1
1 and u−1

2 are the inverse maps of u1 and u2, and the determinant of
their Jacobian are denoted as

∣∣Ju−1
2

∣∣ and
∣∣Ju−1

2

∣∣.
To derive the gradients of the harmonic energy, we denote (x1, x2) and (y1, y2)

as the local coordinates of M1 and M2. In the local coordinates, the maps can
be represented as u1 = (u1

1, u
2
1) and u2 = (u1

2, u
2
2). The gradient flow of u1 can

then be expressed in the form of Einstein’s summation as [15]:

∂EH

∂ur
1

= −αH

[
ΔM1u

r
1 + gαβΓ r

2,pq

∂up
1

∂xα

∂uq
1

∂xβ

]
(r = 1, 2) (7)
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where ΔM1 is the Laplace-Beltrami operator on M1, gαβ = (gαβ)−1, and Γ r
2,pq

is the Christoffel symbol on the manifold M2. Similarly, the gradient flow of
u2 is:

∂EH

∂us
2

= −αH

[
ΔM2u

s
2 + hpqΓ s

1,αβ

∂uα
2

∂yp

∂uβ
2

∂yq

]
(s = 1, 2) (8)

where ΔM2 is the Laplace-Beltrami operator on M2, hpq = (hpq)−1, and Γ s
1,αβ

is the Christoffel symbol on the manifold M1.
By combining the above results, we have the gradient descent flows of u1 and

u2 to minimize the energy:
⎧
⎪⎪⎨

⎪⎪⎩

∂u1

∂t
= −∂ED

∂u1
− ∂EIC

∂u1
− ∂EH

∂u1

∂u2

∂t
= −∂ED

∂u2
− ∂EIC

∂u2
− ∂EH

∂u2

(9)

To numerically solve these two equations on M1 and M2, we use the approach
of solving PDEs on implicit surfaces[16–18] and represent M1 and M2 as a
signed distance function φ and ψ, respectively. With the implicit representation,
we have a very simple formulation for the gradient flow of the harmonic energy.
Using the signed distance function, we can express gradient operators on surfaces
in terms of conventional gradient operators in R

3. For example, the intrinsic
gradient ∇M1f of a function f on M1 can be expressed as Π∇φ∇f , where ∇f
is the gradient of f in R

3 and Π∇φ = I−∇φ∇φT is the projection operator. By
substituting the implicit form of gradient operators into (9), we can write the
gradient descent flow of u1 and u2 as:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u1

∂t
= 2

L∑

j=1

αjD(ξj1 − ξj2 ◦ u1)Π∇ψ∇ξj2(u1)

+ αICΠ∇ψ
[
JTu2(I − u2 ◦ u1) + (u−1

2 − u1)|Π∇φJu−1
2

|
]

+ αHΠ∇ψ∇ · (Π∇φJ
T
u1)

∂u2

∂t
= 2

L∑

j=1

αjD(ξj2 − ξj1 ◦ u2)Π∇φ∇ξj1(u2)

+ αICΠ∇φ
[
JTu1(I − u1 ◦ u2) + (u−1

1 − u2)|Π∇ψJ
u−1
1

|
]

+ αHΠ∇φ∇ · (Π∇ψJTu2)

(10)

For numerical efficiency, all computations are performed on narrow bands sur-
rounding the surfaces. More details of the computational schemes can be found
in [16].

3 Laplace-Beltrami Eigen-Features

To use the above variational framework, it is important to design proper fea-
tures that can capture the common geometry across surfaces. This is generally
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a difficult problem and the solution is application dependent. In this section, we
propose two feature functions to characterize the global geometry of elongated
structures with neuroanatomical significance such as hippocampus and putamen.
Both features are invariant to scale differences and natural pose variations. For
a surface M, the first feature function ξ1 : M → R characterizes the tail-to-head
trend of elongated structures, and the second feature ξ2 : M → R describes the
lateral profile of the surface. We next develop the algorithm to compute both
features from the Laplace-Beltrami eigenfunction of M.

For a surface M, the eigenfunctions of its Laplace-Beltrami operator is defined
as [19–23]:

ΔMf = −λf (11)

The spectrum of ΔM is discrete and the eigenvalues can be ordered as 0 = λ0 ≤
λ1 ≤ λ2 ≤ · · · . For λi, the corresponding eigenfunction of λi is denoted as fi. For
the first eigenvalue λ0 = 0, the eigenfunction f0 is constant, so it is not useful
to describe the shape. Among the rest eigenfunctions, the second eigenfunction
f1 is particularly interesting for modeling the global characteristics of elongated
subcortical structures such as the hippocampus. If we view f1 as a map from M
to R, it has the following property[24]:

f1 = arg min
f⊥f0,||f ||=1

∫

M
|∇Mf |2dM. (12)

with

λ1 =
∫

M
|∇Mf |2dM. (13)

Thus this function f1 can be viewed as the smoothest, non-constant map from
M to R in the space orthogonal to f0. To numerically compute the eigenfunction,
we represent M as a triangular mesh M = (V , T ), where V is the set of vertices
and T is the set of triangles. By using the weak form of (11) and the finite
element method, we can compute the eigenfunction by solving a generalized
matrix eigenvalue problem [22]:

Qf = λUf (14)

where Q and U are matrices derived with the finite element method.
To show how the eigenfunction f1 can model the global shape of elongated

structures, we construct its Reeb graph to obtain an explicit representation [25].
For a function f1 defined on a manifold M, its Reeb graph is defined as the
quotient space with its topology defined via the equivalent relation x � y if
f1(x) = f1(y) for x, y ∈ M. To numerically construct the Reeb graph, we trace a
set of level contours of the eigenfunction f1 on the triangular mesh representation
of M. To ensure the level contours distribute evenly over the entire surface, we
use an adaptive sampling scheme developed in [23]. These level contours are used
as the nodes of the Reeb graph and the connectivity of these nodes are established
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(a) (b)

Fig. 1. The Reeb graph of a hippocampus. (a) The Reeb graph of the f1. (b) The
surface patches interpolating the level contours.

(a) (b)

Fig. 2. The feature functions of a hippocampus. (a) The first feature function ξ1. (b)
The second feature function ξ2.

according to the neighboring relations of level contours. As an example, we show
in Fig. 1(a) the Reeb graph of a hippocampus. By representing each node of
the Reeb graph as the centroid of the level contour, we can see this graph has a
chain structure and provides a compact model of the essentially one dimensional,
tail-to-head trend of the hippocampus.

Based on the Reeb graph of f1, we define the first feature function ξ1. Be-
cause the eigenfunction is generally a Moss function [26], its Reeb graph has a
tree structure for genus zero surfaces. For hippocampus, the Reeb graph of f1
typically has a chain structure as shown in Fig. 1. In the case there are branches
in the Reeb graph, we prune the smaller branches according to the size of the
associated level contour to ensure the pruned graph has a chain structure. We
order the nodes on this chain with the increase of the function f1 and denote the
level contour at each node as Ci(i = 1, · · · , N). Each contour is digitized into K
points Ci = [Ci,1, Ci,2,, · · · , Ci,K ]. Because these points are obtained from the
vertices of the mesh, we have the following relation

C = AV (15)

where C = [C1, C2, · · · , CN ]T is the set of all the points on level contours, and the
matrix A represents the linear interpolation operation that generates the level
contours. To quantitatively describe the tail-to-head trend of the shape, we first
define the feature function ξ1 on the level contours as ξ1(Ci,k) = −1+2∗ i/N for
points on Ci. To define the function ξ1 on the entire mesh, we solve the following
regularized linear inverse problem:

||ξ1(C) −Aξ1(V)||2 + βξ1(V)T
Qξ1(V) (16)
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where ξ1(C) and ξ1(V) are vectors of the values of ξ1 on the level contours and
the vertices of the mesh, respectively. The matrix Q is the same as in (14) and
the term ξ1(V)T

Qξ1(V) encourages smoothness of the function ξ1. For this least
square problem, we have the solution for ξ1(V) as

ξ1(V) = (ATA+ βQ)−1AT ξ1(C). (17)

We define the second feature function ξ2 also based on the eigenfunction of the
Laplace-Beltrami operator to characterize the lateral profile of elongated struc-
tures. For each level contour Ci, we generate a surface patch that approximates
the minimal surface of Ci. This is achieved by first building a Delaunay triangu-
lation of Ci,k(k = 1, · · · ,K) using the software triangle [27] and then applying
Laplacian smoothing to this mesh to obtain a smooth patch interpolating the
interior of the boundary Ci as shown in Fig. 1(b). For this surface patch, we
compute the second eigenfunction of its Laplace-Beltrami operator and denote
it as γi

2. The Reeb graph of γi
2 is then computed with N level contours Di or-

dered with the increase of the function γi
2. For each level contour Di, we assign

a value −1 + 2 ∗ i/N to describe its lateral position on the surface. The value
of the feature function ξ2 on Ci,k is defined using linear interpolation from the
values of neighboring level contours. Once we define the feature function ξ2 on
the level contours, we can compute its value on the vertices of the entire mesh
similarly as:

ξ2(V) = (ATA+ βQ)−1AT ξ2(C) (18)

where ξ2(C) and ξ2(V) are the vectors of values of ξ2 on the level contours and
the vertices, respectively.

As an illustration, we show the feature functions of a hippocampus in Fig:
2 (a) and (b) with the parameter β = 10, N = 100,K = 100, which clearly
illustrates the power of the eigen-features in characterizing the relative locations
of points on the surfaces.

4 Experimental Results

In this section we present experimental results to demonstrate our method. We
will first illustrate our algorithm on the mapping of two types of surfaces: hip-
pocampus and putamen. After that, we apply our method to a data set of 890
hippocampal surfaces and present statistically significant results.

4.1 Hippocampus Results

In the first experiment, we tested our algorithm on nine hippocampal surfaces.
We chose one of them as the atlas and computed maps between this surface
and the other eight surfaces. The parameters in the energy function are α1

D =
100, α2

D = 50, αIC = 6, αH = 1. To start the iterative algorithm, we use the same
approach that we developed in [23] to automatically find an initial map. For all
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Fig. 3. A visualization of the hippocampal mapping results. The texture pattern on
the atlas surface in the center is projected onto the other eight surfaces.
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Fig. 4. The effect of eigen-features and inverse consistency on the quality of maps.
(a) The standard deviation of the Jacobian with (α1

D = 100, α2
D = 50) and without

(α1
D = 0, α2

D = 0) the eigen-features. (b) The standard deviation of the Jacobian with
(αIC = 6) and without (αIC = 0) inverse consistency.

the surfaces, the mapping algorithm converged in less than 1500 iterations and
the computational process took less than 10 minutes on a PC of 1.6GHz and
1.5GB memory. The mapping results between the atlas and the eight surfaces
are visualized in Fig. 3 by projecting a texture pattern onto these surfaces with
the correspondences established by the computed maps. While the surfaces vary
quite significantly, we can see the corresponding parts are matched correctly
and this shows the robustness of our method to structural variations across
population.

To illustrate the importance of the Laplace-Beltrami eigen-features and in-
verse consistency, we turned off these terms separately and measured quantita-
tively their impact on the quality of maps. In our experiments, we computed
the standard deviation of |Ju1 | and |Ju2 | as an indicator of the quality of maps
because it measures the area distortion resulting from the maps. As shown in
Fig. 4(a) and (b), smaller area distortions have been achieved for all the surfaces
by incorporating both the eigen-features and inverse consistency.
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(a) (b)

Fig. 5. The result of PCA on the 30 putamen surfaces. (a) Top: the mean shape.
Bottom: the eigenvalues of PCA. (b) Shapes generated by varying the coefficients of
the first three principal components.

(a) (b) (c) (d)

Fig. 6. The p-value map of atrophy rates. (a)(b) NC vs MCI. (c)(d) NC vs AD.

4.2 Putamen Results

In the second experiment, we tested our method on a group of 30 putamen
surfaces. By choosing one of the surfaces as the atlas, we computed the maps
from the other 29 surfaces to the atlas with the same parameters as in the first
experiment. Using the correspondences across the 30 putamen surfaces that have
been established by the maps, we can build a shape prior model for the putamen
by performing a principal component analysis (PCA) [2]. The mean shape of
the putamen is shown at the top of Fig. 5(a), where a texture pattern is also
generated for visualization. The eigenvalues computed from the PCA process are
plotted at the bottom of Fig. 5(a) where we can see most of the variations are
captured by the first few components. As an illustration of the shape prior model,
we plotted the shapes generated with the first three principle components. The
texture pattern on the mean shape is also plotted on each synthesized surface
in Fig. 5(b) to visualize correspondences across the shapes. From the results we
can see the shape prior model is able to generate valid shapes with a quite large
range (±5σi) of coefficients for the principal components.
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4.3 ADNI Results

In the third experiment, we apply our mapping algorithm to a data set of 890
right hippocampal surfaces. The hippocampi were segmented automatically with
the algorithm in [28] from the screening and 12-month follow-up scans of 445 sub-
jects from the Alzheimer’s Disease Neuroimaging Initiative(ADNI)[29]. Among
the subjects, there are 136 normal controls (NC), 228 patients with mild cogni-
tive impairment(MCI), and 81 patients with Alzheimer’s disease(AD). The goal
of this experiment is to test the differences of normal aging, MCI, and AD in
terms of the atrophy rates in the hippocampus.

As a first step in this experiment, we computed maps from all 890 surfaces
to the atlas surface used in the first experiment as shown in the center of Fig.
3, and the same parameters as in the first experiment were used for all surfaces.
In order to compute such a large amount of surface maps, we implemented our
method on a grid of more than 1000 CPUs and this enables us to compute all
the maps in parallel.

To perform statistical analysis, we first generated a regular mesh representa-
tion of the atlas surface with 2000 vertices. Using the maps computed above,
we projected the triangular mesh of the atlas onto the 890 surfaces. As a result,
all surfaces were represented with the same triangulation and their vertices have
one-to-one correspondences. To quantify the atrophy rate of the hippocampus
locally, we define a thickness measure at each vertex of the mapped surfaces
as the distance from the vertex to the Reeb graph of the first Laplace-Beltrami
eigenfunction as shown in Fig. 1 (a). By viewing this Reeb graph as a medial core
of the hippocampus, our thickness measure is very similar to the definition in [1]
except that our definition is completely intrinsic and invariant to pose variations
such as translation, rotation and reflection. For the hippocampal surfaces of a
subject, the atrophy rate at each corresponding vertex then equals the change of
the thickness over the 12-month period as a percentage of the thickness at the
screening scan.

Given the atrophy rates at corresponding vertices of all subjects, we performed
two group analyses. In the first group study, we compared the NC group with the
MCI group. At each vertex, a one-tailed t-test is applied to test the hypothesis
that the MCI group has a higher atrophy rates than the NC group. The resulting
p-value map is plotted onto the mean shape of the NC group in Fig. 6(a) and (b)
in the top and bottom view. This map shows the significance level across different
regions of the hippocampus. To correct for multiple comparisons, we performed
10,000 permutation tests and an overall statistically significance p-value 0.0063
was obtained. In the second group analysis, we compared the NC group with
the AD group. Similarly, a one-tailed t-test was applied to test the hypothesis
that the AD group has a higher atrophy rate than the NC group. The p-value
map of this group analysis is plotted in Fig. 6(c) and (d). We also applied 10,000
permutation tests to correct for multiple comparisons and the overall p-value is
0.001, which shows the map is statistically significant. By comparing the maps
in Fig. 6(c)(d) and Fig. 6(a)(b), we can clearly see the expansion of the regions
with higher atrophy rates from the MCI to the AD group.
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5 Conclusions and Future Work

We proposed a general framework for surface mapping with both eigen-feature-
based data terms and regularizing terms for inverse consistency and smoothness.
We successfully demonstrated its application in computing maps between elon-
gated structures such as hippocampus and putamen. For future work, we will
design new eigen-features and apply the current framework to other anatom-
ical structures. We will also perform validations to compare our method with
previous techniques.
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