
Real-time Tracking Using Level Sets

Yonggang Shi, W. Clem Karl ∗

Electrical and Computer Engineering Department
Boston University
Boston, MA 02215

email:{yshi,wckarl}@bu.edu

Abstract

In this paper we propose a novel implementation of
the level set method that achieves real-time level-set-based
video tracking. In our fast algorithm, the evolution of the
curve is realized by simple operations such as switching
elements between two linked lists and there is no need to
solve any partial differential equations. Furthermore, a
novel procedure based on Gaussian filtering is introduced
to incorporate boundary smoothness regularization. By re-
placing the standard curve length penalty with this new
smoothing procedure, further speedups are obtained. An-
other advantage of our fast algorithm is that the topology
of the curves can be controlled easily. For the tracking of
multiple objects, we extend our fast algorithm to maintain
the desired topology for multiple object boundaries based
on ideas from discrete topology. With our fast algorithm, a
real-time system has been implemented on a standard PC
and only a small fraction of the CPU power is used for
tracking. Results from standard test sequences and our real-
time system are presented.

1. Introduction

Real-time tracking of object boundaries is an impor-
tant task in many vision applications such as video surveil-
lance, video conferencing, and human-computer interac-
tion, etc. Parametric contours have been applied success-
fully to achieve real-time performance[12, 7, 6, 19], but
they have difficulties in handling topological changes such
as the merging and splitting of object regions. For this pur-
pose, the level set method[15] is a more powerful technique
and various models have been proposed[2, 16, 4, 14, 9, 21].
But the high computational cost of the level set method has

∗This work was partially supported by The Air Force Office of Scien-
tific Research under Grant F49620-03-1-0257, The National Institutes of
Health under Grant NINDS 1 R01 NS34189, and The Engineering research
centers program of the NSF under award EEC-9986821

limited its popularity in real-time scenarios. In this pa-
per, we propose a novel approach to implement the level
set method. Our approach does not need to solve any par-
tial differential equations (PDEs), thus reducing the compu-
tation dramatically compared with optimized narrow band
techniques proposed before. With our approach, real-time
level-set-based video tracking can be achieved.

Tracking models using level sets can be classified as
edge-based or region-based. In [16], a geodesic model that
combines motion and edge information was proposed. Such
edge-based models can be traced back to the snake model
in [13]. Based on morphing images, an early work on
region-based tracking was proposed in [2]. Using the dif-
ference between the current frame and a reference back-
ground, a region-based model was proposed in [4]. By
generalizing the region competition[22] idea, statistical ap-
proaches become quite popular recently. In [14, 21], the
feature distributions of both the object and background re-
gions were used for tracking. In [9], a predefined distri-
bution for the object region was tracked by minimizing a
Kullback-Leibler or Bhattacharyya distance.

Considerable work has been done to improve the speed
of level-set-based curve evolution. The basic idea has been
to limit the solution of the level set PDE to a narrow band
around the zero level set[1, 17, 20, 16], but issues such as
narrow band construction, reinitialization and step size con-
trol still make existing level set methods computationally
too expensive for real-time tracking.

The novel implementation we propose in this paper
avoids the above problems. Our approach is based on the
key observation that implicitly represented curves can be
moved by simply switching elements between two linked
lists. We also propose a Gaussian filtering process to replace
curvature-based smoothing, and this further speeds up our
algorithm. Another advantage of our method is that ideas
for controlling topological changes in [11] can be incorpo-
rated into our algorithm easily, which can be important for
the tracking of multiple objects and medical imaging appli-
cations. With our fast level set implementation, we have

developed a region-based real-time video tracking system
requiring only a small fraction of the CPU power on a stan-
dard PC, leaving computational power available for other
tasks, such as recognition, trajectory analysis, etc.

The rest of the paper is organized as follows. In Section
2, we present the tracking model used in this paper. Our
fast level set implementation for the two-region case is then
presented in Section 3. For the case of multiple object re-
gions, we extend our fast algorithm to incorporate topology
control capabilities in Section 4. Real-time tracking results
are presented in Section 5. Finally conclusions are made in
Section 6.

2. Tracking Model

In this paper, we use a region-based tracking model
based on the region competition[22] idea, but our fast level
set implementation is also applicable for edge-based mod-
els.

We assume each scene of the video sequence is com-
posed of a background region Ω0 and M object re-
gions Ω1,Ω2, · · · ,ΩM . The boundaries of these M ob-
ject regions are denoted as C1, C2, · · · , CM . We model
each region with a feature distribution p(v|Ωm)(m =
0, 1, · · · , M), where v is the feature vector defined at each
pixel. For example, the features can be the color, the output
of a filter bank designed to model textures, or other visual
cues. Assuming that the feature distribution at each pixel is
independent, the tracking result of each frame is the mini-
mum of the following region competition energy:

E = −
M∑

m=0

∫
Ωm

log p(v(x)|Ωm)dx

︸ ︷︷ ︸
Ed

+λ

M∑
m=1

∫
Cm

ds

︸ ︷︷ ︸
Es

(1)

where Ed is the data fidelity term that represents the likeli-
hood of the current scene, Es is for smoothness regulariza-
tion and is proportional to the length of all curves, and λ is
the non-negative regularization parameter.

By computing the first variation of this energy, the curve
evolution equation for the minimization of this energy is:

dCm

dt
= (Fd + Fs) �NCm

(m = 1, 2, · · · , M) (2)

where �NCm
is the normal of Cm pointing outward, and Fd

and Fs are the speed resulting from Ed and Es, respectively.
The speed Fd represents the competition between two re-
gions and it is Fd = log[p(v(x)|Ωm)/p(v(x)|Ωout)], where
Ωout denotes the region outside Cm at x ∈ Cm. The speed
Fs makes the curve smooth and it is Fs = λκ, where κ is
the curvature.

L in

Lout

>0φ

φ <0

1C

Figure 1. The implicit representation of the
curve C1 and the two lists Lin and Lout in the
neighborhood of C1.

Lout

L in

φ <0
C

φ >0

pixel A

pixel B

1

Figure 2. Illustration of the motion of the
curve C1 by switching pixels between Lin and
Lout.

Since the focus of this paper is on real-time level set
implementation for video tracking, we use a simple track-
ing strategy as follows. For each frame, we use the track-
ing results from the last frame as the initial curves, and
then evolve each curve according to (2) to locate the object
boundaries in the current frame. Once it stops, we move on
to track the next frame of the video sequence.

3. Fast Level Set Implementation

In this section, we present a fast level set implementation
of the curve evolution process in (2) when the scene is com-
posed of only the background Ω0 and a single object region
Ω1. Extensions are then made to track multiple objects with
different feature distributions in the next section.

To represent the background Ω0 and the object region
Ω1, we use a level set function φ which is negative in Ω1

and positive in Ω0. Based on this representation, we define
two lists of neighboring pixels Lin and Lout of C1 as shown
in Fig. 1. Formally, they are defined as:

Lout = {x|φ(x) > 0 and ∃y ∈ N4(x) such that φ(y) < 0},
Lin = {x|φ(x) < 0 and ∃y ∈ N4(x) such that φ(y) > 0}

where N4(x) is a 4-connected discrete neighborhood of a
pixel x with x itself removed.

In conventional implementations of the level set method,
an evolution PDE is solved either globally on the whole do-
main or locally in a narrow band to evolve the curve ac-
cording to (2). Our fast level set implementation is based
on the key observation that the implicitly represented curve
C1 can be evolved at pixel resolution by simply switching
the neighboring pixels between the two lists Lin and Lout.
For example, as we show in Fig.2, the curve C1 moves out-
ward at pixel A and shrinks and splits at pixel B compared
with the curve shown in Fig.1. This motion can be realized
by simply switching pixel A from Lout to Lin, and pixel
B from Lin to Lout. By doing this for all the pixels in
Lin and Lout, the curve can be moved inward or outward
for one pixel everywhere in one scan. Since the curve is
still represented implicitly, topological changes can be han-
dled automatically. With this idea, we can achieve level-set-
based curve evolution at pixel resolution and this is usually
enough for many imaging applications. Next we present the
details of our fast algorithm.

3.1 Basic Algorithm

The data structure used in our implementation is as fol-
lows:
• An array for the level set function φ;
• An array for the evolution speed F ;
• Two bi-directionally linked lists of neighboring pixels:

Lin and Lout.

Besides the inside and outside neighboring pixels contained
in Lin and Lout, we call those pixels inside C1 but not in
Lin as interior pixels and those pixels outside C1 but not in
Lout as exterior pixels. For faster computation, we define φ
as follows:

φ(x) =




3 if x is an exterior pixel,
1 if x ∈ Lout,
−1 if x ∈ Lin,
−3 if x is an interior pixel.

(3)

To switch pixels between Lin and Lout, we define two
basic procedures on our data structure.

The procedure switch−in() for a pixel x ∈ Lout moves
the curve outward one pixel at x by switching it from
Lout to Lin and adding all its neighboring exterior pix-
els to Lout. Formally this procedure is defined as follows:

switch−in(x) :

• Step 1: Delete x from Lout and add it to Lin. Set
φ(x) = −1.

• Step 2: ∀y ∈ N4(x) satisfying φ(y) = 3, add y
to Lout, and set φ(y) = 1.

Similarly, the switch−out() procedure that moves the
curve inward one pixel at x ∈ Lin is defined as follows:

switch−out(x) :

• Step 1: Delete x from Lin and add it to Lout. Set
φ(x) = 1.

• Step 2: ∀y ∈ N4(x) satisfying φ(y) = −3, add
y to Lin, and set φ(y) = −1.

To track the object boundary, we compute the speed at all
pixels in Lout and Lin and store their sign in the array F .
We first scan through the list Lout and apply a switch−in()
procedure at a pixel if F = +1. After this scan, some of the
pixels in Lin become interior pixels and they are deleted.
We then scan through the list Lin and apply a switch−out()
procedure for a pixel with F = −1. Similarly, exterior pix-
els in Lout are deleted after this scan. At the end of this
iteration, a stopping condition is checked. If it is satisfied,
we stop the evolution; otherwise, we continue this iterative
process. In our implementation, the following stopping con-
dition is used:

Stopping Condition. The curve evolution algorithm stops
if either of the following conditions is satisfied:

(a) The speed at each neighboring pixel satisfies:

F (x) ≤ 0 ∀x ∈ Lout;
F (x) ≥ 0 ∀x ∈ Lin. (4)

(b) A pre-specified maximum number of iterations is
reached.

The condition in (4) is very intuitive in the sense of re-
gion competition. When the curve is on the object bound-
ary, all the pixels in Lout are in the background and all the
pixels in Lin are in the object region. When (4) is satisfied,
they disagree with each other on which direction to move
the curve and convergence is reached. When the data is
noisy or there is clutter, regularization is necessary and (4)
may not be always satisfied in the final curve. Thus part (b)
of the condition is also necessary to stop the evolution.

The above algorithm can be applied to arbitrary speed
fields and speeds up the evolution process in (2) dra-
matically compared with previous narrow band techniques
based on solving the level set PDE. For the curve evolution
equation in (2), we can achieve a further speedup by intro-
ducing a novel scheme that separates the evolution driven
by the data dependent speed Fd and the smoothing speed
Fs into two different cycles. In spirit, this idea is similar
to the work in [10] which proposed a fast method to im-
plement the Chan-Vese model[5] over the whole domain,
but the two-cycle algorithm we present next is still based
on updating the two linked lists Lin and Lout to evolve the
implicitly represented curve.

3.2 Two-cycle Algorithm

In the curve evolution equation in (2), the speed Fs for
smoothness regularization is a function of the curvature,
which is computationally quite expensive to evaluate gen-
erally. However when the level set function is chosen as
the signed distance function, the curvature takes a simpler
form and equals the Laplacian of φ. From the theory of
scale-space[18], we know that evolution of a function ac-
cording to its Laplacian is equivalent to Gaussian filtering
the function. Motived by this observation, we propose to
incorporate smoothness regularization using a Gaussian fil-
tering process to further speed up our algorithm.

Let us denote an isotropic Gaussian filter of size Ng×Ng

as G. To smooth the zero level set, we compute the re-
sponse of φ to the Gaussian filter only at pixels in the two
lists Lin and Lout. Due to the need of maintaining our data
structure, we do not take the output of the Gaussian filter
directly. Only when the sign of the output is different from
the original value of φ at a pixel, we apply a switch−in()
or switch−out() procedure to move the zero level set; oth-
erwise, the original value of φ is kept.

To combine this smoothing process with the evolution
of the data dependent speed Fd, we propose a two-cycle
algorithm. In the first cycle of our algorithm, we evolve the
curve according to Fd using the fast algorithm proposed in
Section 3.1. In the second cycle, we apply the Gaussian
filtering process to incorporate smoothness regularization.
The details of this algorithm are listed in Table 1.

Two factors make this two-cycle algorithm faster than
curvature-based regularization. When the noise is low, we
can reduce the parameter Ng or increase the parameter
Na to reduce the percentage of computation allocated for
smoothness regularization. The second reason is that we
can implement the Gaussian filtering process with integer
operations since we only care about the sign of its output.

To conclude, we will use the two-cycle algorithm in
our level-set-based tracking. With this fast implementation,
real-time tracking can be achieved.

4. Tracking Multiple Objects

In this section, we extend our fast algorithm to track mul-
tiple objects with different feature distributions.

For the representation of multiple object regions, we use
two functions: one region indication function ψ and one
level set function φ. This simple representation is motivated
by the work in [8]. The region indication function is defined
as follows:

ψ(x) = m, if x ∈ Ωm(m = 0, 1, · · · , M). (5)

For the tracking of each frame, we assume the initial curves
for all the object regions are separated by the background

Table 1. The Two-cycle Fast Algorithm

• Step 1: Initialize the array φ, Fd, the two lists Lout

and Lin.

• Step 2(cycle one): For i=1:Na do

– Compute the speed Fd for pixels in Lout and
Lin;

– For each pixel x ∈ Lout, switch−in(x) if
Fd(x) > 0;

– For each pixel x ∈ Lin, if ∀y ∈ N(x), φ(y) <
0, delete x from Lin, and set φ(x) = −3.

– For each pixel x ∈ Lin, switch−out(x) if
Fd(x) < 0;

– For each pixel x ∈ Lout, if ∀y ∈ N(x), φ(y) >
0, delete x from Lout, and set φ(x) = 3.

– Check the stopping condition. If it is satisfied,
go to Step 3; otherwise continue this cycle.

• Step 3(cycle two): For i=1:Ng do

– For every pixel x in Lout, compute G ⊗ φ(x).
If G ⊗ φ(x) < 0, switch−in(x);

– For each pixel x ∈ Lin, if ∀y ∈ N(x), φ(y) <
0, delete x from Lin, and set φ(x) = −3.

– For every pixel x in Lin, compute G⊗ φ(x). If
G ⊗ φ(x) > 0, switch−out(x).

– For each pixel x ∈ Lout, if ∀y ∈ N(x), φ(y) >
0, delete x from Lout, and set φ(x) = 3.

• Step 4: If the stopping condition is satisfied in cycle
one, terminate the algorithm; otherwise, go back to
Step 2.

region, but arbitrary topology is allowed in the final track-
ing result. The level set function φ is negative inside all
the object regions and positive in the background. For each
object region Ωm(1 ≤ m ≤ M), two lists of neighboring
pixels Lm

in and Lm
out can be defined as we did for the case of

single object region. Here the interior pixels are those pix-
els inside the object regions but not contained in any Lm

in,
and exterior pixels are those pixels in the background but
not in any Lm

out. Similar to the two region case, the level set
function is defined as:

φ(x) =




3 if x is an exterior pixel,

1 if x ∈ Lm
out for any 1 ≤ m ≤ M,

−1 if x ∈ Lm
in for any 1 ≤ m ≤ M,

−3 if x is an interior pixel.

(6)

To evolve the M curves C1, C2, · · · , CM and keep track
of all the regions, we evolve φ and ψ simultaneously while

keeping all the object regions from merging with each other.
This kind of topology control requirements can be realized
easily in our fast algorithms by incorporating ideas in dis-
crete topology[3, 11]. In the following, we introduce re-
lated concepts in the context of video tracking. For more
detailed discussion about topological numbers and discrete
topology, see [3].

Let N8(x) denote the 3 × 3 neighborhood centered at
a pixel x but with x removed, and Ωobj denote the union
of all the object regions Ωm(1 ≤ m ≤ M). The topo-
logical number of x with respect to Ωobj is the number of
4-connected components in the set Ωobj

⋂
N8(x) and we

denote it as Tobj(x). The topological number of x with
respect to the background region Ω0 is the number of 8-
connected components in the set Ω0

⋂
N8(x) and we de-

note it as Tbg(x). According to [3], the pixel x is a simple
point if both Tobj(x) = 1 and Tbg(x) = 1. For a simple
point, its removal or addition to Ωobj will not change the
topology of Ωobj .

Based on the idea of topological numbers, a topology
preserving level set method was developed in [11] which
does not permit any splitting or merging of the curve. Here
our requirement is more challenging. We want to allow each
region Ωm(1 ≤ m ≤ M) to have more than one connected
components and they can merge and split at will if they be-
long to the same object region, but we also want to prohibit
the merging of two connected components if they are from
different object regions. To achieve this goal, we propose
the concept of the relaxed topological number for a pixel
x ∈ Lm

out(1 ≤ m ≤ M) as follows:

Definition. For a pixel x ∈ Lm
out(1 ≤ m ≤ M), if the

number of object regions that intersect with N8(x) is α(x),
its topological number with respect to Ωobj is Tobj(x), and
its topological number with respect to Ω0 is Tbg(x), then
the relaxed topological number of x is defined as:

Tr(x) = min(α(x),max(Tobj(x), Tbg(x))).

If x is a simple point, then Tr(x) = 1 and its addition to
an object region will not cause two different object regions
to merge. If x is not a simple point but α(x) = 1, we still
have Tr(x) = 1. This means that the addition of x to an
object region will cause the merge of connected compo-
nents from the same object region. For all the other cases,
we have Tr(x) > 1, thus the relaxed topological number
at a pixel can be used to prevent the merging of different
object regions while allowing flexible topological changes
within each object region. Based on this idea, we modify
the switch−in() and switch−out() procedure to update φ
and ψ to track the M object regions as we evolve the zero
level set. The modified procedures are listed as follows:

(a) (b)

Figure 3. (a) The original image and the ini-
tial curves(in white). One initial curve is used
for each object region. (b) The segmentation
result is shown in the region indication func-
tion.

switch−in(x) for x ∈ Lm
out(1 ≤ m ≤ M):

• Step 1: Compute Tr(x). If Tr(x) = 1, continue
to step 2; otherwise, exit the procedure.

• Step 2: Delete x from Lm
out and add it to Lm

in. Set
φ(x) = −1 and ψ(x) = m.

• Step 3: ∀y ∈ N4(x) satisfying φ(y) = 3, add y
to Lm

out, and set φ(y) = 1.

switch−out(x) for x ∈ Lm
in(1 ≤ m ≤ M):

• Step 1: Delete x from Lm
in and add it to Lm

out. Set
φ(x) = 1 and ψ(x) = 0.

• Step 2: ∀y ∈ N4(x) satisfying φ(y) = −3, add
y to Lm

in, and set φ(y) = −1.

Similar to the case of a single object region, we use a
two-cycle algorithm to track multiple object regions. Com-
pared with the algorithm used to track one object, we need
to scan through 2M lists Lm

in and Lm
out(m = 1, 2, · · · , M)

in each iteration of cycle one and two to track M objects.
After the two-cycle algorithm finishes, we perform a like-
lihood test for each pixel in Lm

out(1 ≤ m ≤ M) with
Tr(x) > 1 and set its value in the region indication func-
tion as:

ψ(x) = argmax
m∈SM

p(v(x)|Ωm) (7)

where

SM = {1 ≤ m ≤ M |Ωm

⋂
N4(x) �= ∅}.

Here p(·|Ωm) is the feature distribution for each object re-
gion used in (1). By performing this likelihood test, we
can assign pixels enforced as background before to proper
object regions and enable the final tracking result to have
arbitrary topology, such as multiple object regions connect-
ing with each other. With all the regions labeled, the final

Figure 4. Tracking results of the Hall monitor sequence. Frame 41,49,57,65 are shown.

Figure 5. Tracking results of the Tennis sequence. Frame 1,38,45,65 are shown.

tracking result is saved in ψ for the current frame and we
move on to the next frame.

In Fig. 3, we illustrate an image segmentation example
using our algorithm. The noisy original image shown in
Fig. 3(a) is composed of the background region and four
object regions. We start with four initial curves to local-
ize the four object regions of different intensities. With our
method, successful segmentation is obtained and we show
the region indication function in Fig. 3(b). Note that only
one of the curve is able to split into two parts to localize two
connected components that belong to the same object re-
gion. This example demonstrates the power of our method
to represent and localize multiple regions with the desired
topology.

5. Results

In this section, we present some real-time tracking re-
sults using our fast level set implementation. All the results
presented in this section were run on a 1.7GHz PC.

5.1 Results of Test Sequences

We first present tracking results from three standard test
sequences.

In the first example, we track a person in the Hall mon-
itor sequence in CIF format from frame 41 to 65. The first
frame of this sequence is used as a reference frame. The
feature v used here is the magnitude of the intensity dif-
ference between the current frame and the reference frame.
A Gaussian distribution is assumed for both the object and
background region. As we can see from the tracking results
shown in Fig. 4, we successfully tracked the person and his
shadow, and topological changes of the curves are handled
automatically as he walks in the hallway. For this sequence,
the average tracking time is 0.0069s per frame.

In the second example, we show the tracking results of
65 frames from the Tennis sequence in SIF format. The Y
and V components of the YUV color at each pixel are used
as the feature. The feature distribution of the object and
background region is modeled with a 32 × 32 histogram.
Using the initial curve, we learn the histogram for each re-
gion in the first frame of the video sequence. As shown
in Fig. 5, we successfully tracked the player as he moves
into the scene. The average tracking time for each frame is
0.005s.

In the third example, we track the face of the character
in the Carphone sequence in QCIF format for 40 frames.
The hue and saturation components of the color in the HSV
space at each pixel are used as the feature. The transforma-
tion of color space from YUV to HSV is performed online.
Given the initial curve in the first frame, we learn the distri-
bution of the feature for both the face and the background
region and store the results in a histogram of size 32 × 32.
Even though the head of the character moves dramatically
in a cluttered background in this sequence, we are still able
to track the face successfully as shown in Fig. 6. The aver-
age tracking time for this sequence is 0.0066s per frame.

From the results of these sequences, we can see that our
level set implementation is able to track objects in a video
sequence at a rate much faster than the real-time require-
ment. This makes our algorithm ready to be incorporated
into real-time contour tracking systems where only a small
fraction of the CPU time can be allocated to the tracking
algorithm.

5.2 Results from Our Real-time Tracking System

As a demonstration, we have implemented a real-time
tracking system which includes video capturing, tracking,
motion analysis and the displaying of tracking results. This
system runs at 24 frames per second on a 1.7GHz PC.

Figure 6. Tracking results of the Carphone sequence. Frame 1,20,30,40 are shown.

Display

WebCam

M
at

la
b

Video

Tracking
Results

Final
Results

Algorithm
Tracking

Analysis
Motion

Figure 7. The block diagram of our tracking
system.

A block diagram of our system is shown in Fig. 7.
We use the image acquisition toolbox of Matlab to capture
video sequences from a WebCam. The captured frame is
sent to the tracking algorithm implemented in C++. Track-
ing results from this module are forwarded to an optional
motion analysis algorithm once it is available. After that,
the final results are sent back to Matlab for displaying. Then
the next frame is captured from the WebCam to continue the
tracking process. Currently we use color as the feature for
tracking.

We show two examples from our tracking system. For
both examples, the size of each frame is 352 × 288. In the
first example, we track the motion of two hands as shown in
Fig. 8. This sequence includes various topological changes,
such as the merging of curves, the creation of holes, and the
splitting of curves. With this example, we demonstrate that
complicated topological changes can be tracked in real-time
with our system.

In the second example, we track two objects of different
color distributions using the algorithm for the tracking of
multiple objects developed in Section 4. In the motion anal-
ysis module, we implemented a simple collision detection
algorithm by looking for pixels with Tr(x) > 1. As we can
see from the results shown in Fig. 9, when the two objects
collide, the boundary between these two regions is labeled
in white color. By tracking this interface, we can detect and
follow the collision process. Meanwhile the deformation
and movement of the two objects are tracked successfully
in real-time.

6. Conclusion

In this paper, we have proposed a fast level set imple-
mentation without the need of solving any PDEs. Real-time
results have been achieved for the tracking of both single
and multiple objects. With our approach, a real-time video
tracking system has been implemented on a standard PC.

References

[1] D. Adalsteinsson and J. Sethian, “A fast level set method for
propagating interfaces,” Journal of Computational Physics,
vol. 118, pp. 269–277, 1995.

[2] M. Bertalmio, G. Sapiro, and G. Randall, “Morphing active
contours: A geometric approach to topology-independent
image segmentation and tracking,” Proc. ICIP, vol. III, pp.
318–322, 1998.

[3] G. Bertrand, “Simple points, topological numbers and
geodesic neighborhoods in cubic grids,” Pattern Recognition
Letters, vol. 15, pp. 1003–1011, 1994.

[4] S. Besson, M. Barlaud, and G. Aubert, “Detection and track-
ing of moving objects using a new level set based method,”
Proc. ICPR, vol. 3, pp. 1100 – 1105, Sept 2000.

[5] T. Chan and L. Vese, “Active contours without edges,” IEEE
Trans. Imag. Process., vol. 10, no. 2, pp. 266–277, Feb. 2001.

[6] Y. Chen, Y. Rui, and T. S. Huang, “JPDAF based HMM for
real-time contour tracking,” Proc. CVPR, vol. 1, pp. 543–
550, 2001.

[7] D. Comaniciu, V. Ramesh, and P. Meer, “Kernel-based ob-
ject tracking,” IEEE Trans. Pattern Anal. Machine Intell.,
vol. 25, no. 5, pp. 564–577, May 2003.

[8] H. Feng, D. Castañón, and W. Karl, “A curve evolution
approach for image segmentation using adaptive flows,” in
Proc. ICCV, 2001, pp. 494–499.

[9] D. Freedman and T. Zhang, “Acitve contours for tracking
distributions,” IEEE Trans. Image Processing, vol. 13, no. 4,
pp. 518–526, Apr 2004.

[10] F. Gibou and R. Fedkiw, “A fast hybrid k-means level set al-
gorithm for segmentation,” in Proceedings of the 4th Annual
Hawaii Int’l Conf. Statistics and Mathematics, Jan. 2005, pp.
281–291.

[11] X. Han, C. Xu, and J. Prince, “A topology preserving level
set method for geometric deformable models,” IEEE Trans.
Pattern Anal. Machine Intell., vol. 25, no. 6, pp. 755–768,
Jun 2003.

Figure 8. The results of tracking hands using our system. Frame 1, 40, 60, 81,95, 130, 150,and 200 of
a sequence are shown.

Figure 9. The results of tracking the collision of two objects with different color distribution using
our system. Frame 41, 44, 52, 60, 70, 76, 78, and 80 of a sequence are shown.

[12] M. Isard and A. Blake, “ICONDENSATION: Unifying low-
level and high-level tracking in a stochastic framework,”
Proc. ECCV, pp. 767–781, 1998.

[13] M. Kass, A. Witkin, and D. Terzopoulos, “Snakes:active con-
tour models,” International Journal of Computer Vision, pp.
321–331, 1988.

[14] A. Mansouri, “Region tracking via level set PDEs without
motion computation,” IEEE Trans. Pattern Anal. Machine
Intell., vol. 24, no. 7, pp. 947–961, Jul 2002.

[15] S. Osher and J. Sethian, “Fronts propagation with curvature-
dependent speed: algorithms based on Hamilton-Jacobi for-
mulations,” Journal of computational physics, vol. 79, pp.
12–49, 1988.

[16] N. Paragios and R. Deriche, “Geodesic active contours and
level sets for the detection and tracking of moving objects,”
IEEE Trans. Pattern Anal. Machine Intell., vol. 22, pp. 266–
280, Mar 2000.

[17] D. Peng, B. Merriman, S. Osher, H. Zhao, and M. Kang, “A
PDE-based fast local level set method,” Journal of Compu-
tational Physics, vol. 155, pp. 410–438, 1999.

[18] P. Perona and J. Malik, “Scale-space and edge detection us-
ing anisotropic diffusion,” IEEE Trans. Pattern Anal. Ma-
chine Intell., vol. 12, no. 7, Jul 1990.

[19] F. Precioso, M. Barlaud, T. Blu, and M. Unser, “Smoothing
B-spline active contour for fast and robust image and video
segmentation,” Proc. ICIP, Sept.

[20] R. Whitaker, “A level-set approach to 3D reconstruction
from range data,” Int’l Journal of Computer Vision, vol. 29,
no. 3, pp. 203–231, OCT 1998.

[21] A. Yilmaz, X. Li, and M. Shah, “Contour-based object track-
ing with occlusion handling in video acquired using mobile
cameras,” IEEE Trans. Pattern Anal. Machine Intell., vol. 26,
no. 11, pp. 1531–1536, NOv 2004.

[22] S. Zhu and A. Yuille, “Region competition: unifying
snake/balloon, region growing, and bayes/mdl/energy for
multi-band image segmentation,” IEEE Trans. Pattern Anal.
Machine Intell., vol. 18, no. 9, pp. 884–900, Sept 1996.

