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Direct mapping of hippocampal surfaces with intrinsic shape context
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We propose in this paper a new method for the mapping of hippo-
campal (HC) surfaces to establish correspondences between points on
HC surfaces and enable localized HC shape analysis. A novel
geometric feature, the intrinsic shape context, is defined to capture
the global characteristics of the HC shapes. Based on this intrinsic
feature, an automatic algorithm is developed to detect a set of
landmark curves that are stable across population. The direct map
between a source and target HC surface is then solved as the
minimizer of a harmonic energy function defined on the source
surface with landmark constraints. For numerical solutions, we
compute the map with the approach of solving partial differential
equations on implicit surfaces. The direct mapping method has the
following properties: (1) it has the advantage of being automatic; (2)
it is invariant to the pose of HC shapes. In our experiments, we apply
the direct mapping method to study temporal changes of HC
asymmetry in Alzheimer's disease (AD) using HC surfaces from 12
AD patients and 14 normal controls. Our results show that the AD
group has a different trend in temporal changes of HC asymmetry
than the group of normal controls. We also demonstrate the flexibility
of the direct mapping method by applying it to construct spherical
maps of HC surfaces. Spherical harmonics (SPHARM) analysis is
then applied and it confirms our results on temporal changes of HC
asymmetry in AD.
© 2007 Elsevier Inc. All rights reserved.
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Introduction

The hippocampus is a subcortical structure that plays an
important part in learning and memory in normal development
and is affected by pathologies such as Alzheimer's disease
(AD), schizophrenia, and epilepsy (Squire et al., 2004). While
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the detection of hippocampal (HC) volume changes has been
the focus of most image processing studies because of its
relatively straightforward interpretation, the popularity of more
sophisticated approaches based on shape analysis is increasing
as they promise more accurate localization of changes in HC
surfaces. In this paper, we propose a novel method for the
analysis of HC surfaces that establishes a direct map between
HC surfaces.

For the analysis of HC surfaces, two different approaches were
taken in previous studies. The first approach aims at finding a map
between points on HC surfaces. This correspondence can then be
used for further statistical analyses, for example the principal
component analysis of point sets (Bookstein, 1997; Cootes et al.,
1995). Various shape representations have been used to compute
the map between HC surfaces. Based on the large deformation
diffeomorphism method (Christensen et al., 1996; Grenander and
Miller, 1998; Joshi and Miller, 2000), a map from a template HC
surface embedded in a 3D MRI image to a target MRI image is
computed using information from both manually labeled landmark
points and the grey levels of image intensities (Joshi et al., 1997;
Csernansky et al., 1998, 2002; Wang et al., 2001, 2003, 2006
Csernansky et al., 2005; Holm et al., 2004; Vaillant et al., 2004;
Vaillant and Glaunes, 2005). This method can produce both an
automatic segmentation of the HC surface and a map from the
template HC surface to the segmented surface. Proper alignment
of the template and target image volume is necessary before the
transformation is computed to reduce the sensitivity with respect
to the initial pose. Another popular method of HC surface
mapping is based on the parameterization of the HC surface with
the spherical harmonic basis functions (Brechbühler et al., 1995)
which establishes correspondence between points with the
resulting parameterization (Kelemen et al., 1999; Gerig et al.,
2001; Shenton et al., 2002; Shen et al., 2003). The map derived
from this method also depends on the initial alignment of HC
surfaces. A triangulation approach (MacDonald, 1998) was
utilized to represent HC surfaces (Lee et al., 2004), where
homologous points between surfaces were found with a distance
map to the centroid of each surface after initial alignment.
Recently, conformal parameterizations were used to study HC
surfaces (Wang et al., 2005a,b) by matching the mutual
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Fig. 1. The flow chart of the whole mapping process.
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information between the mean curvature of surfaces in the
parameterization domain.

The second approach uses the medial models of HC surfaces to
perform shape analysis. As a direct extension of the medial axis in
2D shapes (Golland et al., 1999), a center line of the HC surface
was used as a simple and compact representation to compare 3D
shapes (Thompson et al., 2004; Narr et al., 2004). Based on the
mathematical definition of medial models (Blum and Nagel, 1978),
the medial model of a 3D surface is a set of manifolds. For a group
of HC surfaces, the challenge is that their medial models may not
have the same topology because of their sensitivity to small
variations on surfaces. To overcome this difficulty, a fixed
topology has been imposed for the medial models of HC surfaces
in many previous works (Pizer et al., 1999; Styner et al., 2003;
Fletcher et al., 2004; Bouix et al., 2005). Due to the variability of
HC surfaces, however, there is no consensus on the topology of the
medial model to perfectly represent the HC surface. A careful
balance must be found between the robustness and complexity of
the medial models.

In this paper, a new method is presented to compute maps
between HC surfaces based on an intrinsic characterization of
HC geometry using a new feature called the intrinsic shape
context (ISC). This feature captures the global characteristics of
HC surfaces and provides a quantitative approach to describe our
anatomical intuition that different parts of the hippocampus can
be located using their relative positions on the surface,
irrespective of the pose of the shape. Such global characteriza-
tions are also more stable to the impact of disease processes on
HC geometry than local curvature features. This makes them
suitable to guide the mapping and comparison of both HC
surfaces of normal controls and those affected by diseases such
as AD. Based on the ISC feature, we develop an automatic
method to detect a set of robust landmark curves and use them as
boundary conditions to compute the direct map between surfaces.
This direct map represents the minimizer of a harmonic energy
defined on the HC surface under landmark constraints. We
compute the map directly without intermediate parameterizations
by solving a partial differential equation (PDE) on the HC
surface with the implicit representation (Osher and Sethian,
1988). Our method is completely automatic and invariant to rigid
body motions and scaling, which eliminates initial alignment
using the rigid transform before computing the map, a necessary
step in many previous algorithms. Using the level-set representa-
tion, we can use numerical schemes on regular grids to compute
intrinsic gradient operators for the solution of the PDE on the
HC surface.

As an illustration, the main steps of the whole mapping
process between two HC surfaces using our algorithm are
summarized in the flow chart in Fig. 1. The input data are the
triangular mesh representation of the source and target HC
surface. Here they are denoted as high resolution meshes to
contrast with meshes of lower resolution used in landmark
detection. These high resolution meshes are then remeshed to
1000 vertices. The result of the remeshing process generates a
good approximation to the original surface but tractable for
landmark detection using the ISC feature. Using our automatic
landmark detection algorithm, a set of landmark curves on both
the source and target surface are then generated and used as the
boundary condition for computing the map between them. Using
the landmark curves, an initial map from the source to the target
HC surface is computed on the original high resolution source
HC surface (Shi et al., 2007). After that, both the high resolution
meshes and the initial map are converted to their implicit
representations and a PDE is solved iteratively in a narrowband
of the implicitly represented surfaces to minimize the harmonic
energy under landmark constraints (Shi et al., 2007). The solution
of the direct mapping method is a map from the source to the
target HC surface defined in a narrowband of the source surface
and interpolation can be used to obtain the value of the map on
vertices of the mesh representation for visualization or other
purposes.

The rest of the paper is organized as follows. The general
framework of direct mapping between surfaces under landmark
constraints is first reviewed. After that, we present the definition of
the ISC feature and discuss its numerical computation. Using the
ISC feature, we develop an automatic algorithm to delineate a set
of landmark curves to provide the boundary condition for mapping
between surfaces. Once the whole mapping framework is
presented, we show its application in HC atlas construction,
measuring HC asymmetry and performing spherical harmonic
analysis of HC surfaces. Experimental results are presented to
demonstrate the usefulness of our method with the construction of
an HC atlas and the analysis of HC asymmetry changes that occur
during the progression of AD. Finally, we discuss the relation of
our method to previous works and suggest future directions for
research.

Method

The direct mapping framework

A direct mapping framework for cortical surfaces with sulcal
landmark constraints was proposed by solving PDEs on implicitly
represented surfaces (Shi et al., 2007). Even though this method
was presented in the context of cortical mapping, the method by
itself is general and can be applied to the mapping of surfaces
derived from other objects as long as stable landmark curves may
be extracted on the surfaces of interest. In this section, the
mathematical background of this direct mapping framework is
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discussed, followed by its extension to the mapping of HC
surfaces.

Let M and N denote the source and target surface and the goal
is to compute a map u: M → N . For each surface, assume that a
set of landmark curves are provided and the map on them is
known. Let fCg

Mðg ¼ 1; 2; N CÞg denote the set of landmark
curves on M and fCg

N ðg ¼ 1; 2; N CÞg the landmark curves on
N . The implicit representations of the surfaces and the map are
used in this direct mapping approach (Osher and Sethian, 1988;
Bertalmý´o et al., 2001; Mémoli et al., 2004a,b). For the surface
M, it is represented implicitly as the zero level set of its signed
distance function ϕ:R3YR. Because the signed distance function
has the property |∇ϕ| =1, we have the simple form Π∇ϕ= I−
∇ϕ∇ϕT for the projection operatorΠ∇ϕ onto the tangent space of
M, where I is the identity operator. Similarly the signed distance
function ψ of N is used to represent it implicitly. With implicit
representations, all numerical computations are performed on
regular grids, which leads to algorithms that are easy to implement
and have well-understood numerical performance. Consistent with
the implicit representation of the surface, the map u defined on M
is also extended along the normal direction of M into the
surrounding Euclidean space such that Ju∇ϕ =0, where Ju is the
Jacobian of u. Based on the implicit representations of the surfaces
and the map, the direct mapping framework explained here solves
the map as the minimizer of the following constrained variational
problem:

u ¼ argmin
u

E ¼ argmin
u

Z
1
2
tJ/u t

2d /ð Þdx;

such that u Cg
M

� �
¼ Cg

N g ¼ 1; 2; N C; ð1Þ

where Ju
ϕ=JuΠ∇ϕ is the intrinsic Jacobian of u on the manifold

M, the matrix norm of Ju
ϕ is the Frobenius norm defined as

tJ/u t
2 ¼ RijðJ/u Þ

2
ij; and δ(⋅) is the delta function. The constraints

in the above formulation are the boundary conditions on landmark
curves. By minimizing the harmonic energy while satisfying the
landmark constraints, the map obtained will interpolate the
boundary conditions as smoothly as possible.

If we ignore the constraints on the landmark curves, a gradient
descent type algorithm has been proposed (Mémoli et al., 2004a) to
solve for the map u iteratively according to the Euler–Lagrange
equation of the harmonic energy:

∂u
∂t

¼ jjwðuðx; tÞÞ jd jj/J
T
u

� �� �
ð2Þ

where Π∇ψ(u(x, t)) = I−∇ψ(u(x, t))∇ψ(u(x, t))T is the projection
operator onto the tangent space of N at the point u(x, t). To
take into account the landmark constraints, we first developed a
novel algorithm to compute an initial map between surfaces
using the relative location of points on surfaces with respect to
the landmark curves that were summarized with a feature called
landmark context. Adaptive numerical schemes were then
designed to compute the operator ∇⋅ (Π∇ϕJu

T ) such that
diffusion is only allowed in between landmark curves but not
across them on the surface M. Cortical mapping experiments
have demonstrated that our method can successfully minimize
the energy while following the constraints on sulcal landmark
curves (Shi et al., 2007).

The goal in this paper is to extend the direct mapping method to
HC surfaces. By establishing direct maps between HC surfaces,
properties on HC surfaces will be better localized, providing a new
tool for neuroscience researchers. Unlike cortical surfaces,
however, there is no obvious landmark curve on HC surfaces. To
overcome this challenge, we next propose the ISC feature on
surfaces using their intrinsic geometry. Based on this feature, we
then develop an automatic algorithm that delineates a set of stable
landmark curves on HC surfaces. After that, the direct mapping
framework in Eq. (1) may be applied to compute maps between
HC surfaces.

Intrinsic shape context

Landmark curves are critical for the mapping of surfaces
because they encode high level information and make the final
mapping meaningful. Previous approaches on the automatic
detection of landmark curves on anatomical shapes typically
focused on extremities of local features, such as curvature (Thirion,
1996; Lui et al., 2006). One advantage of such features is that they
are invariant to rigid motions. However, in our experience these
features tend to be noisy and lack robustness, and it is generally
difficult to establish correspondences for landmark curves derived
from such local features on different shapes without human
intervention. For shapes like HC surfaces, this type of approach is
difficult to apply since there is no obvious geometric extremity.

Our research takes a different route and proposes a global
shape feature called the intrinsic shape context (ISC) to detect
landmark curves in our direct mapping of HC surfaces. The ISC
feature we propose here is motivated by the shape context feature
(Belongie et al., 2002) that can be used to capture global
characteristics of the shape (Tu and Yuille, 2004). Another closely
related work is the spin image feature (Johnson and Hebert, 1999)
for the characterization of 3D shapes represented as meshes. The
major distinction between our method and previous works is that
we define the ISC feature using only the intrinsic geometry of the
surface. With the ISC feature, each point on the HC surface is
characterized by its relative location to other parts of the
hippocampus. This characterization is invariant to scale and rigid
transforms. The idea of intrinsic shape context matches well with
our anatomical intuition of the hippocampus because its parts,
such as the head, tail and body, are also characterized through their
relative locations on the hippocampus and can typically be
differentiated with respect to each other no matter how we change
the pose of the hippocampus. By utilizing landmark curves derived
from the ISC feature, we can capture this anatomical regularity and
establish correspondences between individual surfaces through the
direct mapping process.

Definition of ISC
Let M denote an HC surface which has genus zero topology.

For two points p and q on M, let C:[0, 1]→M be a curve on the
surface that connects p and q. The length of the curve is defined as

LðCÞ ¼
Z 1

0
tCVðtÞtdt ð3Þ

where the magnitude of the tangent vector C′ (t) is determined by
the first fundamental form of the Riemannian surface M, which is
the inner product of tangent vectors. For all the curves from p to q,
the one of the minimum length is called the minimal geodesic. The
length of the minimal geodesic from p to q is called the geodesic
distance between these two points and it is denoted as d(p, q). The



Fig. 2. An illustration of the ISC feature of an HC shape. The ISC feature of
six points p1, p2,…, p6 (labeled as red dots) on the surface are plotted.
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geodesic distance between any two points on M is independent of
the ambient space where the surface is embedded and is thus in-
trinsic to the surface. Based on the concept of geodesics, the
geodesic distance transform of a point p on the manifold M can
be defined as:

dpðxÞ ¼ dðp; xÞ 8xaM: ð4Þ

We also denote the maximum distance between two arbitrary
points on M as dmax, i.e.,

dmax ¼ max
p; qaM

dðp; qÞ: ð5Þ

To illustrate the advantage of using the geodesic distance for the
design of pose invariant features in 3D shape analysis (Elad and
Kimmel, 2003; Ben Hamza and Krim, 2006), instead of the
Euclidean distance, we consider a “C” shape formed by cutting
open a torus. With geodesic distances, it is easy to identify both
ends of this shape as their geodesic distance transforms achieve the
largest value, while they are almost not distinguishable from the
rest of the shape using the Euclidean distance.

To define the ISC feature at a point p on M, we partition the
3D shape into an ordered set of bins according to the geodesic
distance transform dp(⋅). Let K denote the number of bins and the
bin size be defined as ϵ=dmax /K. A set of K bins on M with
respect to a point p∈M is defined as follows:

BINðkÞ ¼ fxaM j kϵVdpðxÞbðk þ 1Þϵg 0VkVK � 1 ð6Þ

where the k-th bin, BIN(k), is the set of points with their geodesic
distance to p falling into the range [kϵ, (k+1)ϵ). Using this set of
bins, the ISC feature at the point p is defined as a histogram hp(k):

hp kð Þ ¼
R
BINðkÞ dM

SM
; 0VkVK � 1 ð7Þ

where ʃBIN(k) dM is the surface area of the k-th bin, and SM is the
total surface area of M.

For each point on the surface, its ISC feature uses a histogram
to characterize the distribution of the rest of the shape with respect
to itself. The power of this feature is illustrated in Fig. 2 where the
ISC of six points on an HC surface, labeled as red dots, is plotted,
and each of them has a different profile. The differences between
points in the middle part and end parts of the HC surface are
particularly significant. The ISC features of points in the middle of
the HC surface have smaller variances and tend to be more
concentrated than the ISC features of points in the head and tail of
the HC surface. This is easy to understand since they are closer to
all the other points on the surface.

Since only intrinsic geometry is used in its definition, the ISC
feature is invariant to rigid body motions, including rotation,
translation, and reflection, as such motions will not affect geodesic
distances and the surface area. The ISC feature is also scale
invariant. Consider a point p∈M and the ISC feature hp(k)
(0≤k≤K−1) at this point. If we scale the shape M by a factor of
α∈Rþ, any point q that was in the k-th bin of p before scaling
will still be in the same bin as the geodesic distance between
arbitrary points, the maximum distance dmax, and the bin size ϵ
will all be scaled by the same factor α. This shows that each bin of
p still consists of the same set of points in M. Thus the area of
each bin ʃBIN(k) dM is scaled with the same factor α2 as the total
surface area SM; which guarantees the scale invariance of the ISC
feature. As a conclusion, the ISC feature is invariant to both rigid
motions and scaling, which we summarize as the pose invariant
property of the ISC feature.

Numerical computation
The key step to numerically compute the ISC feature is to find

the geodesic distance transform on a surface. For this purpose, a
triangular mesh representation MðV; T Þ of an HC surface is used,
where V is the set of vertices, and T is the set of triangles.

To compute the geodesic distance transform of a vertex p∈V,
we use the fast marching algorithm on triangular meshes (Kimmel
and Sethian, 1998). This algorithm solves the following Eikonal
equation

tjMdt ¼ F ð8Þ

where jMd is the intrinsic gradient of the function d on M, and
F:M→R is a weight function defined on the manifold. When
F=1, the solution is the geodesic distance transform. By changing
F, we can get weighted geodesic distance transforms. To compute
the geodesic distance transform with respect to a vertex p, the fast
marching algorithm starts a front from p and recursively computes
the time when the front visits each point of M. For a triangular
mesh of N vertices, the computational cost is O(N log N). Using
the result of the fast marching algorithm, the minimal geodesic
between two vertices can also be traced backwards and computed
numerically (Kimmel and Sethian, 1998). The maximum distance
dmax is obtained by computing the distance transform at each
vertex of the mesh M. After the geodesic distance transform dp(⋅)
is computed, the ISC feature at p is computed by visiting each
triangle and adding its contribution, which is described in the
appendix, to each integral ʃBIN(k)

dM in the definition of the ISC
feature hp(k).

The computational cost of finding ISC features for a mesh is
directly related to the size of the mesh. To compute the ISC feature
for all vertices of the mesh M, the fast marching algorithm needs
to be applied N times. Including the cost of computing the histo-



Fig. 4. The partition of an HC surface using its intrinsic entropy map. (a) The
intrinsic entropy map of the HC surface. (b) The HC surface is partitioned
into five regions.
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gram, finding ISC for a mesh with a large number of vertices can
be quite computationally expensive. In our mapping framework
shown in Fig. 1, a key step is the remeshing of the original
triangular mesh representation of the HC surface to reduce the
number of vertices and make the computation of the ISC feature
tractable. As an example, we illustrate in Fig. 3 the effect of
remeshing. The original HC surface, with 27,668 vertices and
55,332 faces, is shown in Fig. 3(a). We apply a remeshing
algorithm (Peyré and Cohen, 2006) to derive a mesh with 1000
vertices and 1996 faces in Fig. 3(b). The vertices of the lower
resolution mesh distribute uniformly over the high resolution mesh,
and it approximates the original surface fairly well. For this lower
resolution mesh, the ISC feature of all vertices can be computed in
around 1 min on a 3GHz PC. All of our computations for ISC
features and landmark curve detection are performed on these
lower resolution meshes. This ensures that our algorithm is
computationally tractable and generates fairly accurate landmark
curves for the original high resolution meshes.

Automatic detection of landmark curves

In this section, we present an automatic landmark detection
algorithm using the ISC feature. As a first step in this algorithm,
the HC surface is automatically partitioned into five regions with
two marking the head, two marking the tail, and one marking the
middle body of the HC surface. Based on this partition, a set of
eight landmark curves are derived.

Partition of the HC surface
As we illustrated in Fig. 2, the ISC features of different parts of

the HC surface have distinctive profiles. To differentiate these
parts, we use the entropy of the ISC feature as a compact summary
of this very rich feature and then apply simple thresholding to get a
robust partition of the HC surface.

For a vertex p∈M, the entropy of its ISC hp is defined as:

EðpÞ ¼ �
X
k

hpðkÞloghpðkÞ ð9Þ

From information theory, it is well known that entropy is a good
measure of the variability in a histogram and it computes how
much information the histogram contains. For points on the tail or
the head, we see in Fig. 2 that their ISC features tend to be more
uniformly distributed than those of points in the middle part of the
HC surface. The entropy encodes this type of profile and assigns a
Fig. 3. The result of remeshing. (a) An HC surface represented with a high
resolution mesh (27,668 vertices, 55,332 faces). (b) The HC surface
represented with a mesh of lower resolution after remeshing (1000 vertices,
1996 faces).
higher value for the head and tail part than the middle part of the
HC surface, and it changes continuously as we move along the
surface. For the same HC in Fig. 2, the entropy is computed at each
vertex and visualized in Fig. 4(a). The map of entropy shows how
the magnitude of the entropy varies at different parts of the HC
surface. We denote this map as the intrinsic entropy map (IEM) of
the HC surface.

Given the IEM of the HC surface, it can then be automatically
partitioned into regions with similar entropy values using simple
thresholding. Let TH1 and TH2 be the median and 75 percentile of
the intrinsic entropy map on M. Using these two thresholds, the
HC surface can be automatically divided into 5 regions as shown in
Fig. 4(b):

• R1: vertices in the hippocampus head with E(p)NTH2.
• R2: vertices in the hippocampus head with TH1≤E(p)≤TH2.
• R3: vertices with E(p)bTH1.
• R4: vertices in the hippocampus tail with TH1≤E(p)≤TH2.
• R5: vertices in the hippocampus tail with E(p)NTH2.

For these five regions, R1 and R2 correspond to the head, R4

and R5 correspond to the tail, and R3 corresponds to the middle
body of the HC surface. The threshold TH1 is chosen such that the
area of R3 is half of the total area of the HC surface. The head and
tail of the HC surface are divided into smaller subregions to
enforce more landmark constraints in the mapping process because
they have higher variability than the HC body. The six labeled
points p1, p2, ⋯, p6 in Fig. 2 also illustrate differences of the ISC
features in the five regions, with p1 in R1, p2 in R2, p3 and p4 in
R3, p5 in R4, and p6 in R5. Using this very rich feature, machine
learning techniques can also be adopted to automatically learn the
partition process if training data are available. Even though the
same range of entropy is used to define the regions in the head and
tail part of the HC surface, the intrinsic geometry of the HC surface
enables us to differentiate them easily. Because region R2

corresponds to a region like the “neck” in the head part, it should
have an area bigger than R4. Indeed, this is a very robust indicator
as we found in our experiments. In Fig. 5, we plot the percentage
of these two regions with respect to the total surface area for a
group of 104 HC surfaces used in our experiments. These surfaces
were manually segmented from the MRI images of subjects
including 12 AD patients and 14 normal controls. It clearly shows
that R2 is always bigger than R4. Using this feature, regions R2 and
R4 can be first identified from the two regions that satisfy TH1≤
E(p)≤TH2. Once this is done, regions R1 and R5 can be found



Fig. 5. The relative size of regions R2 and R4 for a group of 104 HC surfaces.

797Y. Shi et al. / NeuroImage 37 (2007) 792–807
using their neighboring relation with R2 and R4. As the 104
surfaces were from both AD patients and normal controls, the
result in Fig. 5 also shows the robustness of our partition process.
Note that the partition process is a clustering or segmentation
process. The method proposed here is simple to implement and
gives robust performance in our experiments. It is by no means the
only way to partition the HC surface using ISC. There are various
measures for the distance between histograms such as Kullback–
Leibler divergence. The literature on clustering and segmentation is
also vast. This promises many interesting ways of partitioning the
HC surfaces.

Automatic delineation of landmark curves
We detect eight landmark curves automatically on HC surfaces.

These landmark curves can be classified into two categories: four
latitudinal (C1, C2, C3, C4) and four longitudinal (C5, C6, C7, C8)
landmark curves. The latitudinal curves are the boundary of the
five regions R1, R2, R3, R4, and R5 as a result of the partition
process using the IEM. The longitudinal curves travel from the
head to the tail and connect the region boundaries of R1 and R5.

The latitudinal landmark curve Ci(1≤ i≤4) is the boundary
between regions Ri and Ri+ 1 on the triangular mesh M as shown in
Fig. 6. For each curve Ci, we define it as a piecewise linear curve
that sequentially connects the set of vertices in Ri with at least one
vertex in its 1-ring neighborhood that belongs to Ri+1. Starting
from an arbitrary vertex on Ci, it can be traced along either
clockwise or counterclockwise to delineate a closed contour.
Maintaining a consistent tracing order is critical in establishing
Fig. 6. Latitudinal landmark curves (in red) on an HC surface.
correspondences on the landmark curves of different HC surfaces
during the mapping process. In this research, the order of the
curves is chosen with respect to the region R1, which is the head of
the HC surface. For the left HC surface, the region boundaries are
traced clockwise with respect to R1. Due to the reflective relation
between the right and left HC, the boundaries are traced
counterclockwise with respect to R1 on the right HC surface.

The longitudinal landmark curves connect C1 to C4 and partition
the region R2∪R3∪R4 into four parts. For the automatic delineation
of these curves, we first choose a region Rc={p∈M|E(p)bTH3},
where TH3 is the 25 percentile of the IEM, and compute its geodesic
center p* as the minimizer of the following energy function:

p* ¼ arg min
paM

Z
Rc

dpðxÞ2dM ð10Þ

where dp is the geodesic distance transform of the point p. The
existence and uniqueness of such a minimizer are ensured for
smooth Riemannian manifolds (Jost, 2001). As a result of
remeshing, the number of vertices in Rc is limited, so a full search
strategy within Rc can be used to find p*. A gradient descent type
algorithm was also proposed to find p* on surfaces (Peyré and
Cohen, 2004). Because of the trend of bending from the head of the
HC surface to its tail, which can be seen from the more concentrated
ISC feature of p4 than that of p3 in Fig. 2, the region Rc and the
starting point p* localize stably on the side of HC surface close to the
medial wall of cortical surface. Using p* as the starting point, we
next describe the process of delineating C5, C6, C7, and C8 as
illustrated in Figs. 7(a), (b), (c), and (d).

• The delineation of C5

We first compute the geodesic distance transform dp* of p*
on M. The start point p1,5 of C5 is the farthest point on C1 to
p*. The end point p4,5 of the curve C5 is the farthest point on C4

to p*. The curve C5 connects these two points using a weighted
Fig. 7. The delineation of longitudinal landmark curves (in green) on an HC
surface. (a) C5; (b) C6; (c) C7; (d) C8.



Fig. 8. Stability of landmark curves on HC surfaces from an AD patient at (a)
the baseline scan and (b) the follow-up scan. Arrows in (b) highlight shape
differences.
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geodesic on M with the weight defined as F=1 / (dp*+10
−6).

This weight penalizes points close to the starting point p* and
ensures that the curve C5 will follow a path on the lateral side of
the HC surface that is away from the medial wall of the cortical
surface.

• The delineation of C6

The landmark curve C6 will be on the medial side of the HC
surface and it runs approximately parallel to C5. For this
purpose, we compute the geodesic distance transform dC5

with
respect to the curve C5, and choose the start point p1,6 of C6 as
the farthest point on C1 to C5 and the end point of C6 as the
farthest point on C4 to C5. The curve C6 is then formed by
connecting both the start and end point to p* through a weighted
geodesic on M with the weight defined as F=1 / (dC5

+10−6)
such that points close to the lateral side on the surface will be
penalized more. This encourages the curve C6 to follow a path
on the medial side of the HC surface close to the medial wall of
the cortical surface.

• The delineation of C7 and C8

The curves C7 and C8 further divide the closed regions formed
by the curves C1, C4, C5, and C6. The start point of C7 is the
middle point of the curve that traces from p1,6 to p1,5 on C1, and
the start point of C8 is the middle point of the curve that traces
from p1,5 to p1,6 on C1. The end point of C7 is the middle point
of the curve that connects p4,6 to p4,5 and the end point of C8 is
the middle point of the curve that connects p4,5 to p4,6. The end
points of both C7 and C8 are then connected to their start points
through a weighted geodesic on M with the weight defined as
F=1 / (dC5

+dC6
) such that points close to C5 and C6 are

penalized more and the curves C7 and C8 will divide the regions
between C5 and C6 equally.

Up to now, we have developed an automatic algorithm to detect
a set of eight landmark curves on HC surfaces. Because the
landmark curves are derived from the ISC feature, they also have
the property of pose invariance. We applied it to a data set of 104
HC surfaces that were used in our experiments and were able to
detect these curves on all of them. Even though it is hard to
quantify the stability of landmark curves on different HC surfaces,
the IS feature ensures these landmark curves are robust to small
changes of surface geometry because it is defined using geodesic
distances that are robust to local variations of surfaces. As an
example, the left HC surfaces from the baseline and follow-up scan
of an AD patient are shown in Fig. 8, together with the
automatically detected landmark curves. We can see various
changes happen to the HC surface from the follow-up scan, as
highlighted with black arrows in Fig. 8(b), but the relative
locations of the landmark curves remain quite stable. This suggests
that these landmark curves can provide valuable guidance to the
registration process and help establish mappings between corre-
sponding parts of HC surfaces.

To apply the landmark curves into our direct mapping
algorithm, we further divide the eight curves into line segments
using the intersection of the landmark curves. For the latitudinal
curves, each is divided into four segments using their intersections
with the longitudinal curves. For the longitudinal curves, each is
divided into three parts according to their intersections with
latitudinal curves. Overall, we have 28 landmark curves on each
HC surface. By parameterizing them using curve length, one-to-
one correspondence can be established between points on
landmark curves from different HC surfaces. This defines the
map on the landmark curves and forms the boundary condition for
the direct mapping of HC surfaces.

HC atlas construction

Given a group of HC surfaces M1, M2, ⋯, MQ, we can
construct an HC atlas M̄ with our direct mapping method. We
choose an arbitrary surface as the source surface and compute the
direct maps from this surface to the rest of surfaces in the group.
Without loss of generality, we use M1 as the source surface here
and denote the maps from M1 to Mq as uq (q=2, ⋯, Q). Let
V i(i=1, ⋯, N) be the set of vertices on M1. We project each
vertex V i onto Mq with the direct map uq and express the
corresponding point as uq (V i). Using these correspondences, a
rigid transform Tq including rotation and translation is computed
to align each surface Mq (q=2, ⋯, Q) with M1 by minimizing
the following energy:

Tq ¼ argmin
Tq

XN
i¼1

tV i � TquqðV iÞt2
: ð11Þ

This optimization problem is solved with the dual quaternion
method (Walker et al., 1991) that provides the closed form solution
to the matching of point pairs. The mean of the vertex V i with its
corresponding points uq(V i) on Mq (q=2, ⋯, Q) is computed as
(Cootes et al., 1995):

V i¯ ¼ 1
Q

V i þ
XQ
q¼2

Tquq V ið Þ
 !

ð12Þ

and the atlas surface M̄ is represented as a triangular mesh with the
vertices V̄ i(i=1, ⋯, N) and the same mesh structure as M1. With an
increase in computational cost, an iterative strategy (Cootes et al.,
1995) can also be used to further reduce the bias in the HC atlas by
repeating the above procedure with the current atlas as the source
surface.

Mapping HC asymmetry

By computing a direct map from the left to the right HC surface
from the same subject, we can easily calculate an asymmetry
measure between them. Let ML and MR denote the triangular
mesh representation of the left and right HC surface and



Fig. 9. Landmark curves on the sphere.

799Y. Shi et al. / NeuroImage 37 (2007) 792–807
u:ML→MR the map between them. Let VL
i (i=1, ⋯, NL) be the

set of vertices on ML. The projection of the vertices onto MR is u
(VL

i ) (i=1, ⋯, NL). Before we measure the asymmetry, we compute
a rigid transform T to align ML and MR similar to the aligning
process in the atlas construction process. Using the map u and the
rigid transform T, a measure of local asymmetry at each point p on
the left HC surface is defined as:

LasymðpÞ ¼ tp� TuðpÞt 8paML: ð13Þ

This measure characterizes the magnitude of the difference
between each point p∈ML and its image u(p)∈MR after we
factor out the rigid transform T. By integrating the local asymmetry
Lasym over the left HC surface, we can then define a global
asymmetry measure Gasym between the left and right HC surface.
Numerically, we can compute Gasym over the triangular mesh ML

as follows:

Gasym ¼
X
TiaT

AreaðT iÞ
3

X3
j¼1

Lasym V j
T i

� �
ð14Þ

where T is the set of triangular faces of ML, V j
Mi

, ( j=1, 2, 3) are
the vertices of the i-th face T i of ML, and LasymðV j

Mi
Þ is the local

asymmetry at a vertex. The asymmetry over each face is
approximated as the product of its area and the mean of the local
asymmetry of its vertices. The global asymmetry is then the sum of
the asymmetry over all faces.

Spherical harmonics analysis of HC surfaces

Spherical harmonic (SPHARM) analysis has been an important
tool for studying HC surfaces and other brain structures. The key
step in applying SPHARM analysis is to map an HC surface to the
sphere (Brechbühler et al., 1995). Once this map is computed,
SPHARM analysis is in principle similar to Fourier analysis and it
provides a mechanism to decompose surfaces into orthogonal basis
functions. This makes it possible to apply conventional filtering
techniques in signal processing to shape analysis, such as
smoothing through low pass filtering that eliminates high
frequency components. We demonstrate here that our mapping
method can also be applied to construct maps from HC surfaces to
the sphere and thus provide a new way of performing SPHARM
analysis of HC surfaces.

Let the unit sphere be parameterized by (θ,ϕ) with θ∈ [0, π] and
ϕ∈ [0, 2π). The north and south poles are parameterized by θ =0
and π, respectively. To map the HC surface to the sphere, we define a
similar set of landmark curves on the sphere as shown in Fig. 9. We
define the four latitudinal curves C1, C2, C3, C4 on the sphere as the
parallels of latitude with θ=0.23π, 0.33π, 0.67π, 0.77π. The
latitudinal angles are chosen such that the area of the region between
C2 and C3 is half the area of the sphere. The curve C1 further divides
the region north of C2 into two subregions of equal area. Similarly,
the curve C4 divides the region south of C3 into two subregions of
equal area. This process matches the selection of the thresholds TH1

and TH2 in our landmark detection algorithm on HC surfaces. The
four longitudinal curvesC5,C6,C7,C8 are chosen as the intersection
of four meridians of azimuth ϕ =0, π, π/2, 3π/4 and the region
between C1 and C4. Using the landmark curves, we can then map
HC surfaces to the sphere with our direct mapping algorithm.

As a result of the spherical mapping process, each point x=
(x, y, z)∈R3 on an HC surface can be parameterized with the
spherical coordinates (θ, ϕ) and we denote this parameterization as
x(θ, ϕ). With spherical harmonic functions, we can then approxi-
mate the HC surface as (Brechbühler et al., 1995):

xðh; /Þ ¼
XL
l¼0

Xl
m¼�l

cml Y
m
l ðh; /Þ ð15Þ

where Yi
m (θ, ϕ) is the spherical harmonic basis function indexed by

(l, m), L is the maximum order of approximation, and cl
m is the

expansion coefficient that equals the projection of x(θ, ϕ) onto Yl
m:

cml ¼ b xðh; /Þ; Ym
l ðh; /Þ N

¼
Z p

0

Z 2p

0
xðh; /ÞYm

l ðh; /Þd/sinðhÞdh: ð16Þ

Using the SPHARM analysis, a different measure of HC
asymmetry can be defined. For each subject, we first align its left
HC surface ML to the right HC surface MR using the direct
mapping from ML to MR as we did in computing Gasym in Eq.
(14). After that, the map to the sphere is computed for each surface
and SPHARM analysis is applied. Let the coefficients be denoted
as cl,L

m and cl,R
m for ML and MR, respectively. Our asymmetry

measure based on the SPHARM representation is defined as:

Sasym ¼
XL
l¼0

Xl
m¼�1

tcml;L � cml;Rt; ð17Þ

which sums up the difference between corresponding coefficients
up to the order L.

Results

In this section, we present experimental results to demonstrate
our direct HC mapping framework. In our experiments we used
HC surfaces of 26 subjects that were scanned using T1-weighted
MRI on two occasions to study temporal changes of brain
structures of AD patients (Thompson et al., 2004). The 26 subjects
include 12 AD patients (age at baseline scans: 68.4±1.9 years; at
follow-up scans: 69.8±2.0 years) and 14 normal elderly controls
(age at baseline scans: 71.4±0.9 years; at follow-up scans: 74.0±
0.9 years). For the group of AD patients, the average time between
the baseline and follow-up scan is 1.5 years. For the group of normal
controls, the average interval between the two scans is 2.6 years. The



Fig. 11. Visualization of mapping results. (a) The zebra pattern on the high
resolution source surface. (b) Projection of the zebra pattern onto the high
resolution target surface using the initial map. (c) Projection of the zebra
pattern onto the high resolution target surface using the final map computed
from minimizing the harmonic energy under landmark constraints.
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HC surfaces were manually traced bilaterally from 3D MRI images
(Thompson et al., 2004) according to a standard neuroanatomical
atlas (Duvernoy, 1988), following criteria robust to inter- and
intrarater errors (Narr et al., 2001, 2002a,b). To construct the
triangular mesh representation of HC surfaces, we first computed the
distance transform of each HC surface from its manually traced
result. A fast level set algorithm (Shi and Karl, 2005) was then used
to extract the zero level set of the distance function with genus zero
topology. After that, we ran a marching cube algorithm with
topology guarantees (Lewiner et al., 2003) to obtain the final mesh
representation of HC surfaces, which were used as inputs to our
direct HC mapping framework shown in Fig. 1.

Atlas construction

In this experiment, we demonstrate our direct mapping method
through the construction of an HC atlas. As an example, we first
show the mapping results between two left HC surfaces, which
were chosen randomly from the baseline scans of normal controls,
following the flowchart in Fig. 1. The high resolution mesh
representations of the source and target HC surface are shown in
Figs. 10(a) and (b). The results of the remeshing and landmark
detection algorithm are shown in Figs. 10(c) and (d). Using the
landmark curves and the high resolution meshes in Figs. 10(a) and
(b), an initial map was then computed. To visualize this initial
map, a zebra pattern on the source mesh as shown in Fig. 11(a)
was generated and projected onto the target surface as shown in
Fig. 11(b). Clearly, the result is quite noisy and not satisfying.
After converting the surfaces and the initial map to their implicit
representations, the PDE in Eq. (2) was solved iteratively to com-
Fig. 10. The input data to the direct mapping algorithm. (a, b) The high
resolution source and target HC surface. (c, d) Landmark curves plotted in
red on the lower resolution source and target surface from remeshing.
pute the direct map. This computational process took around
20 min on a 3GHz PC. The harmonic energy is plotted as a
function of the iterations in Fig. 12, and we see that our algorithm
minimized the energy and converged to the final result. As a
visualization of the final map, it was used to project the zebra
pattern in Fig. 11(a) onto the target surface. The result is shown in
Fig. 11(c) where the pattern is well preserved on the target surface.
This shows that our algorithm generates a smooth map from the
Fig. 12. The harmonic energy decreases as the direct mapping algorithm
converges to the solution.



Fig. 13. The HC atlas with automatically detected landmark curves. (a) View
one from the bottom. (b) View two from the top.

Fig. 15. Visualization of the direct map from the left to the right HC surface.
(a) The zebra pattern on the high resolution left surface. (b) Projection of the
zebra pattern onto the high resolution right surface using the direct map.
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source to the target surface and preserves corresponding structures
during the mapping process.

By repeating the above mapping process, we constructed an HC
atlas using the 14 left HC surfaces from baseline scans of the control
group. The source surface here was represented as a triangular mesh of
2000 vertices. The HC atlas, which is the average of the 14 surfaces
and shares the same mesh structure of the source surface, is shown in
Fig. 14. Direct mapping from the left HC surface to the right HC surface of
the same subject. (a) The high resolution left HC surface. (b) The high
resolution right HC surface. (c) Landmark curves plotted in red on lower
resolution left surface from remeshing. (d) Landmark curves plotted in red
on lower resolution right surface from remeshing.
Fig. 13 in two different views. We applied our landmark delineation
algorithm to this atlas and it successfully detected the complete set of
landmark curves as plotted on the atlas in Fig. 13. This validates that
our direct mapping algorithm is able to establish mappings between
corresponding structures of HC surfaces and generate anHC atlas that
maintains the overall shape of HC surfaces. Based on this atlas,
various shape analysis tasks can be performed. For example, it can be
used as a reference to measure local changes of individual surfaces
(Wang et al., 2003). We also used it as a substrate for visualization in
our experiments of mapping HC asymmetry.

Mapping temporal changes of HC asymmetry

In this experiment, we apply our direct mapping method to
study the temporal changes of HC asymmetry. As an example, we
first show the mapping results between the left and right HC
surface of a subject. The high resolution left and right HC surface
are shown in Figs. 14(a) and (b). The landmark curves are plotted
on the lower resolution surfaces in Figs. 14(c) and (d) for both
shapes. Once again, the mapping result is visualized by projecting
the zebra pattern on the left HC in Fig. 15(a) to the right HC as
Fig. 16. Alignment of the right HC (brown) to left HC (green) visualized
from two views. (a) View one from the bottom. (b) View two from the top.



Fig. 18. Temporal changes of global HC asymmetry.

802 Y. Shi et al. / NeuroImage 37 (2007) 792–807
shown in Fig. 15(b). This illustrates the invariance of our method
as it successfully computed a direct map that established
correspondences between the left and right HC surface even
though they had very different poses. With this map from the left to
the right HC surface, a rigid transform was computed to align them
so the asymmetry measures in Eqs. (13) and (14) can be computed.
Both surfaces are shown together in Figs. 16(a) and (b) after
applying the rigid transform to the right HC surface, and we can
see very good alignment has been obtained.

To study temporal changes of HC asymmetry, we computed the
global asymmetry between the left and right HC surface of each
subject at both the baseline and follow-up scan. The results for both
the group of AD patients and normal controls are shown as scatter
plots with whisker boxes in Fig. 17. A t-test was performed for each
group with respect to the hypothesis of no change. The result is
significant for the AD group with a P value of 0.0275 and the mean
change is 175. For the group of normal controls, the mean change is
−236 and the P value is 0.0563 and close to being significant. To
account for scale differences between subjects, we calculated for
each subject the ratio of its global asymmetry at the follow-up scan
to that of the baseline scan. For both the AD and control group, the
results are shown as scatter plots together with their whisker plots in
Fig. 17. Global asymmetry of HC surfaces. (a) AD patients. (b) Normal
controls (NC).
Fig. 18. From this plot we can see that AD patients tend to have
larger temporal changes of HC asymmetry compared to normal
controls. To test the statistical significance of the difference of these
two groups, we applied the Wilcoxon rank-sum nonparametric test
and obtained a significant P value of 0.0043.

From the above results, we can see that the asymmetry of the
AD group increases over time while the asymmetry of the control
group has a trend of decreasing. This opposite trend in temporal
changes of HC asymmetry suggests that different processes of
volume losses could exist between these two groups. For the same
data set, different volume loss rates between the AD and controls
were reported (Thompson et al., 2004). For the group of AD
patients, the right hippocampi have higher volume loss rates than
the left hippocampi. On the other hand, the left hippocampi have
higher volume loss rates than the right hippocampi in the group of
normal controls. Our asymmetry mapping results further validate
this opposite trend of volume loss rates between these two groups.

Using our direct mapping method, we can also localize
asymmetry changes over time and test their significance. For each
subject in our study, we first computed a map from its left HC
surface from the baseline scan to its left HC surface from the
follow-up scan, so correspondences between points on the two
surfaces were established. For every pair of corresponding points
of the two surfaces, their ratio of local asymmetry Lasym between
the follow-up scan and the baseline scan was then computed to
Fig. 19. The P value map of local asymmetry changes. (a) View one from the
bottom. (b) View two from the top. (c) Color bar.



Fig. 21. Approximation of the HC surface in Fig. 10(a) with spherical
harmonic functions up to the order L=1, 5, 10, 15, 20, 25.
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obtain a map of temporal changes of local asymmetry on the left
HC surface of the baseline scan. This map of local asymmetry ratio
was projected onto the HC atlas in Fig. 13 by computing a direct
map from the left HC surface at the baseline scan to the atlas. After
the temporal changes of local asymmetry from all the subjects are
mapped onto the HC atlas, a Wilcoxon rank-sum nonparametric
test was applied at each of the 2000 vertices on the HC atlas to test
for significant group differences. As a result of the test, a P value
was obtained at each vertex indicating the significance of the group
difference. This map of the P value on the HC atlas is shown in
Fig. 19, which shows that significant differences tend to occur in
the head and tail regions. To test the overall statistical significance
of this P value map, we applied a permutation test (Nichols and
Holmes, 2002; Thompson et al., 2003, 2004) to take into account
the effect of multiple comparisons. Permutation test can measure
the distribution of features, which is the area of the HC atlas with P
value less than 0.05 in our current test, derived from statistical
maps and compute an overall P value that reflects the chance of the
current pattern occurring by accident. We applied the permutation
test 1 million times and the map in Fig. 19 was confirmed to be
significant with an overall P value of 0.012.

SPHARM analysis of HC surfaces

We apply the SPHARM analysis techniques based on our
direct mapping method to analyze HC surfaces in this ex-
periment. To demonstrate this approach, we computed the map
from the HC surface in Fig. 10(a) to the sphere with landmarks
shown in Fig. 9. Using this map, the zebra pattern on the HC
surface, as shown in Fig. 11(a), was projected onto the sphere
and visualized in Fig. 20. We can see this pattern is mapped
smoothly onto the sphere.

Using this mapping result, we computed the approximation of
the HC surface with SPHARM at the order of L=1, 5, 10, 15, 20,
and 25 and the results are shown in Fig. 21. With the increase of
the approximation order, we can see better reconstructions are ob-
tained. Besides the order L, the accuracy of the SPHARM
representation also depends on the quality of the spherical map.
For example, the average distance from the point on the recons-
tructed surface at the order L=25 in Fig. 21 to their corresponding
points on the original surface in Fig. 10(a) is 0.147 mm. If we
Fig. 20. Zebra pattern in Fig. 11(a) projected onto the sphere.
use the initial map from the HC surface to the sphere to compute
the SPHARM representation, this average distance is 0.204 mm,
which shows the distortion resulting from the spherical mapping
process is reduced by 28% through the minimization of the
harmonic energy in our algorithm. We can also see in Fig. 21 that
the improvement to the reconstructed surface becomes very slow
after L=10. This suggests that SPHARM representation provides a
way of dimension reduction for shape analysis. One advantage of
this dimension reduction is that it could improve numerical effi-
ciency in statistical analysis of group studies. By eliminating high
frequency components that may only reflect individual differences,
SPHARM analysis could also potentially improve the sensitivity of
statistical analyses.

We next apply SPHARM analysis to study the temporal
changes of asymmetry. In our experiment, we chose the order
L=10 to compute Sasym in Eq. (17), which was selected such that
Fig. 22. Temporal changes of HC asymmetry for the group of AD patients
and normal controls (NC) from SPHARM analysis.
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the asymmetry measure on average accounts for 95% of the overall
difference, which can be measured with L=∞ in Eq. (17), for both
the AD and control group. For each subject from both the AD and
control group, we also computed the average approximation error
of SPHARM approximation at L=10. A t-test was applied to the
approximation errors of the AD and control group and the P value
is 0.44, so no group differences were detected with this specific
selection of approximation order. The results of temporal changes
of HC asymmetry measured by Sasym are shown in Fig. 22. The
Wilcoxon rank-sum nonparametric test was again applied to test
group differences and the P value is 0.0031. From the results in
Fig. 22, we see that opposite trends are also followed for the
temporal changes of HC asymmetry from the AD and control
group. This confirms the results in the previous experiment shown
in Fig. 18, but the differences between the two groups here are
more separated. This is probably due to the power of the SPHARM
analysis to filter out unimportant details by constraining our
analysis to a subspace of low dimensions. One limitation of
SPHARM analysis, however, is that it can only provide a global
measure of shape properties, while the asymmetry measure in Eqs.
(13) and (14) uses direct maps between HC surfaces and can
produce detailed local asymmetry changes as shown in Fig. 19.

Discussion and conclusions

We have presented a new method for the mapping of HC
surfaces with a set of automatically detected landmark curves. In
our method, we treat the boundary of the hippocampus as a genus
zero surface, which is the approach taken by most previous works
on HC shape analysis. It should be noted that this is not the only
way to study the morphology of hippocampi. The gray matter sheet
of the hippocampus can also be treated as a surface with boundary
in R3, and interesting findings were reported in functional studies
(Zeineh et al., 2003).

An important property of our method is the utilization of
intrinsic features that are detected automatically. This makes the
resulted mapping process invariant to the pose of HC shapes. In
our study of HC asymmetry, we have computed maps from the left
to the right HC surface without first aligning them, which eli-
minates the impact of factors such as orientation and location on
the final map. After the map is computed, we then align them and
compute the asymmetry using the detailed point correspondences.
This process of first-map-then-align is different from previous
approaches of studying HC asymmetry (Wang et al., 2001;
Shenton et al., 2002) where alignment was a preprocessing step
before detailed correspondences can be established. Methods
based on medial models (Thompson et al., 2004; Narr et al., 2004;
Styner et al., 2003; Fletcher et al., 2004; Bouix et al., 2005) also
have the property of pose invariance; however, they usually
assume a simplified topology about the medial model of the HC
surface such that correspondences on the medial models can be
established, while our method provides a detailed map on the HC
surface.

The landmark curves in our algorithm are derived automatically
according to the intrinsic geometry of HC surfaces and they are used
to guide the mapping between HC surfaces with the goal of
improving functional homology. We demonstrated in our experi-
ments that these landmark curves can be robustly extracted on more
than 100 HC surfaces. This shows that they are able to capture the
geometric regularity among HC surfaces. It is important to evaluate
how well these geometric features correlate with boundaries of
cellular fields in the hippocampus formation, but they are hard to
identify at the current resolution of typical MRI images. With the
increasing popularity of 7T MRI imaging technology (Augustinack
et al., 2005; Xu et al., 2006), however, it is very promising that we
will be able to reliably delineate these structures inside the
hippocampus. When such anatomical boundaries are available, we
cannot only use them to validate our geometric landmark curves, but
also use them to guide the mapping between HC surfaces as our
direct mapping method is able to incorporate general landmark
curves as boundary conditions.

By defining a set of corresponding curves on the sphere, we
have applied our mapping method to compute spherical maps of
HC surfaces. Once the spherical map is available, we follow
previous works (Brechbühler et al., 1995; Kelemen et al., 1999;
Gerig et al., 2001; Shenton et al., 2002; Shen et al., 2003) to
perform SPHARM analysis. It is also possible to combine our
direct mapping method with the SPHARM analysis tools from the
above works by using the direct mapping results to provide the
alignment needed in establishing correspondences between
spherical mapping results of different HC surfaces.

We used the approach of solving PDEs on implicit surfaces to
compute the map as the minimizer of the harmonic energy under
landmark constraints. One advantage of the implicit approach is
that we can use numerical schemes on regular grids to compute
intrinsic derivatives such as the Laplace–Beltrami operator. The
implicit mapping method is also not limited to minimize the
harmonic energy and it is possible to include general data terms
that are designed to match specific applications.

We have applied our method to the study of temporal changes
of HC asymmetry in AD from baseline to follow-up scans to
demonstrate its usefulness in neuroscience research. Statistically
significant results have been obtained that show that the AD group
has an opposite trend in temporal changes of HC asymmetry than
the group of normal controls. This result has been confirmed by
both the direct mapping results and SPHARM analysis. It is also
possible to incorporate detailed time differences between scans into
the statistical analysis, but this requires making assumptions about
the rate of change and can amplify the noise in the manually traced
data. For example, using the same data in Figs. 17(a) and (b), the
Wilcoxon rank-sum test gives a P value of 0.0094 for annualized
HC asymmetry changes if we assume the HC asymmetry changes
linearly over time. This P value is slightly bigger than the one we
reported in mapping temporal changes of HC asymmetry, possibly
due to the change of noise statistics in computing the annualized
rate of changes, but it still suggests that the difference in the
temporal changes of HC asymmetry between the AD and control
group is statistically significant.

Using the direct mapping method, we also obtained a detailed
map of P values of local asymmetry changes across time. This map
suggests that significant changes are localized to the head and tail
regions. Because the HC surfaces are reconstructed from manually
traced contours, it is important to keep in mind possible errors from
this source when interpreting the mapping result. The difficulty in
accurately delineating the anterior boundary between the hippo-
campus and amygdala might affect the mapping result in the head
part of the HC surface (Pruessner et al., 2000). If the errors in
manual tracing are random, our statistical analysis should still pick
up the right trend in the data unless there is a systematic bias in the
tracing process, which is unlikely since the reliability of the tracing
method was shown to be high and the tracer was blind to
diagnostics (Thompson et al., 2004). Due to the limited sample size
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of our data, it is also interesting to further validate the mapping
result when larger data sets are available.

In our future work, we will apply our method to the studies of
other diseases such as schizophrenia (Narr et al., 2004) and HC
morphology in normal development. Besides SPHARM analysis,
we will also investigate the application of other standard shape
analysis tools, for example the principal component analysis
(Cootes et al., 1995), to our mapping results.
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Fig. 23. Two cases in the definition of the cumulative function on a triangle
using linear interpolation.
Appendix A

Here we give the numerical details of evaluating the contribu-
tion of each triangle to the integral dM for the purpose of
computing the ISC feature hp(k) at a vertex p on the surface
M ¼ ðV;TÞ.

Let T i ={A, B, C} be a triangle in T with three vertices A, B,
C. Their geodesic distances to p are dp(A), dp(B), and dp(C).
Without loss of generality, we assume dp(A)≤dp(B)≤dp(C). The
area of T i is denoted as Si. The contribution of this triangle to the
integral dM is the area of the region inside Mi with their geodesic
distance to p in the range [kϵ, (k+1)ϵ) where ϵ is the same bin size
used in Eq. (6). Assuming the function dp(⋅) is linear inside the
triangle, its graph on the triangle is a 2D plane determined by its
value at A, B, and C. By shifting this plane downward by dp(A),
we obtain a pyramid with five vertices (A, B, C, D, E) as shown in
Fig. 23, where the triangle {A, E, D} is the graph of dp(⋅)−dp(A)
and the length of the edges EC and DB are |EC| =dp(C)−dp(A) and
|DB| =dp(B)−dp(A).

Using the above geometric configuration over the triangle Ti,
we define a cumulative function Cum(⋅). For f≥0, the value Cum
(f) denotes the area of the region inside Ti with dp(⋅)b f. Using this
cumulative function, the contribution from the triangle Ti to the
k-th component of the shape context hp(k) is then

Cumððk þ 1ÞϵÞ � CumðkϵÞ
SM

;

where SM is the surface area of M. Clearly Cum(f)=0 for fbdp(A)
and Cum(f)=Si for fNdp(C). To compute the value of Cum(⋅) for
dp(A)≤ f≤dp(C), the set of points in the triangle {A, E, D} with
height f−dp(A) is considered. Because dp(⋅) is assumed linear on
T i, this set is a line and its projection onto the triangle T i is the set
of points with dp(⋅)= f. There are two possible configurations for
this set on the triangle {A, E, D}. When dp(A)≤ fbdp(B), as shown
in Fig. 23(a), this set is a line F1G1 connecting the edges AD and
AE and its projection onto T i is the line F1′G1′ that connects the
edges AB and AC. The value of the cumulative function Cum(f)
corresponds to the area of the triangle {A, F1′, G1′}. In the second
case when f≥dp(B), as shown in Fig. 23(b), this set is a line F2G2

that connects the edges DE and AE and its projection onto T i is
the line F2′G2′ connecting the edges BC and AC. In this case, the
value of the cumulative function Cum(f) is the area of the polygon
{A, B, F2′, G2′}. Summarizing these cases, the complete definition
of the cumulative function is:

Cum fð Þ ¼

0 if f b dpðAÞ;
ðf � dpðAÞÞ2

ðdpðBÞ � dpðAÞÞðdpðCÞ � dpðAÞÞ
Si if dpðAÞV f b dpðBÞ;

1� ðdpðCÞ � f Þ2

ðdpðCÞ � dpðAÞÞðdpðCÞ � dpðBÞÞ

 !
Si if dpðBÞV f b dpðCÞ;

Si if f N ¼ dpðCÞ:

8>>>>>>><
>>>>>>>:

ð18Þ
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