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Hamilton-Jacobi Skeleton on Cortical Surfaces
Yonggang Shi, Member, IEEE, Paul M. Thompson, Ivo Dinov, Arthur W. Toga*, Member, IEEE

Abstract— In this paper, we propose a new method to con-
struct graphical representations of cortical folding patterns by
computing skeletons on triangulated cortical surfaces. In our
approach, a cortical surface is first partitioned into sulcal
and gyral regions via the solution of a variational problem
using graph cuts, which can guarantee global optimality. After
that, we extend the method of Hamilton-Jacobi skeleton [1] to
subsets of triangulated surfaces, together with a geometrically
intuitive pruning process that can trade off between skeleton
complexity and the completeness of representing folding patterns.
Compared with previous work that uses skeletons of 3D volumes
to represent sulcal patterns, the skeletons on cortical surfaces can
be easily decomposed into branches and provide a simpler way
to construct graphical representations of cortical morphometry.
In our experiments, we demonstrate our method on two different
cortical surface models, its ability of capturing major sulcal
patterns and its application to compute skeletons of gyral regions.

Index Terms— Cortex, folding pattern, graphical representa-
tion, skeleton, triangular mesh

I. INTRODUCTION

One key problem in brain mapping is to study the relation
between cortical morphometry and brain functions [2]–[5].
With 3D MRI technologies, it is now possible to obtain struc-
tural information of the brain from a large population in vivo.
In order to test various hypotheses on cortical morphometry
to functions, genetics, and pathologies, it is necessary that
we first build mathematical representations of cortical folding
patterns. To this end, we propose in this paper, a new method
to construct graphical representations of the sulcal and gyral
regions by extending the method of Hamilton-Jacobi skeleton
[1] to triangulated cortical surfaces.

Skeletons, or medial models, are important tools in studying
shapes [1], [6]–[8]. The skeleton of subsets in volume images
was used to represent sulcal patterns in previous works. The
medial model of the union of the gray matter and cerebrospinal
fluid (CSF) was computed to represent the sulcal regions [9],
which was further decomposed into simple surfaces, or sulcal
ribbons, based on the digital topology of 3D grids such that a
graphical model can be constructed with these simple surfaces
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as the graph nodes. The work in [10] also used digital topology
in 3D volumes to detect sulcal and gyral lines. A graphical
structure of the sulcal regions was computed in [11] on the
exterior hull of the cortex by applying a thinning process to
the sulcal regions. Each branch of the graph was further used
to construct sulcal ribbons [12]–[14] with an active contour
evolution. This graphical structure can be used to analyze
cortical morphometry and help semi-automatically [11] or
automatically label the major sulci [15].

With the advance of cortical segmentation techniques,
surface-based approaches have become increasingly popular
in brain mapping studies [16]–[18] because their ability of
capturing the intrinsic geometry of the cortex. In this work,
we propose a skeleton-based method to extract graphical
representations of cortical folding patterns from the surface
representation of a cortex. As illustrated in Fig. 1, there are
two main steps in our method. In the first step, we develop a
graph-cut method to partition the cortical surface into sulcal
and gyral regions. In the second step, the method of Hamilton-
Jacobi skeleton is extended to subsets of triangular meshes
to compute a homotopic skeleton for the sulcal or gyral
regions. We use the triangular mesh representation for cortical
surfaces as this is the output format of many popular cortical
surface extraction algorithms [19]–[26]. One advantage of
working on the triangular mesh is that there is no ambiguity
in the 2D neighboring relation for vertices on the mesh,
thus the digital topology over triangulated surfaces is much
simpler than that of 3D grids, where multiple choices exist
in defining neighboring relations [27], [28]. As a result, it
is straightforward to decompose the skeleton into branches on
triangular cortical surfaces and use them to construct graphical
representations of cortical morphometry.

Among all the sulcal lines, a set of major sulci that
are stable across populations provide boundary conditions
in computing maps between cortices [17], [18], [29], [30].
Various approaches have been proposed to detect these ma-
jor sulci on cortical surfaces [31]–[36]. By constructing a
graphical representation from the skeleton of the sulcal or
gyral regions, our algorithm transforms the folding pattern,
which is implicitly encoded in the surface geometry of the
cortex, into a set of explicitly represented line segments. Using
this explicit representation, semi-automatic approaches can
be easily developed that require very few user interactions
to pick out each major sulcus from the set of sulcal lines.
By equipping the graph with probabilistic models that can
be learned from training data, it is also possible to develop
automated tools for sulci labeling [15].

Using a novel depth measure derived from an exterior hull
of the cortex, a related work in [37] proposed to extract a
network of sulcal lines from a cortical surface model by first
detecting a set of end points of the sulcal regions and then
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Fig. 1. The main steps in our algorithm.

connecting them with a spanning tree. However, circular paths
exist frequently in the sulcal regions. Thus, the assumption
of a tree structure can result in missing important branches
in the line representation of the sulcal pattern, which may
affect the accuracy of further analytic tasks. In this work,
we use curvature features of the cortical surface to define
the sulcal and gyral regions. By computing the Hamilton-
Jacobi skeleton of the sulcal regions, our method can extract
a network representation of the cortical folding pattern that
is homotopic to the sulcal regions. The skeleton extraction
approach we develop here is also applicable to general regions
on triangulated surfaces, for example the gyri.

In the rest of the paper, we first present in section II our
graph-cut method for the segmentation of sulcal and gyral
regions. After that, the Hamilton-Jacobi skeleton is extended
to triangular meshes in section III, together with a pruning
method that provides a geometrically intuitive stopping crite-
rion. Experimental results are presented in section IV. Finally,
conclusions are made in V.

II. GRAPH-CUT SEGMENTATION

In this section, we develop a variational approach to segment
a cortical surface into sulcal and gyral regions. We assume
the cortical surface is represented as a triangular mesh M =
(V , T ), where V = {Vi}K

i=1 and T = {Ti}L
i=1 are the set of

vertices and triangles in the mesh. Our goal is to classify all
vertices into two sets Rs and Rg which represent the sulcal
and gyral regions, respectively.

For the segmentation of the surface M, we define a feature
function at each vertex f : Vi → R with the aim of
differentiating the sulcal from gyral regions. Both curvature
[31], [32], [35] and depth features [37], [38] were used in
previous works on sulci detection. In this work, we use the
mean curvature as the feature function f because it is easy
to compute and very effective in summarizing the geometric
characteristics of the cortical surface. Nevertheless the graph-
cut approach we develop here can be easily adapted to other
feature functions. For the numerical evaluation of the mean

curvature, we use existing modules in LONI Pipeline [39]
that first converts a triangulated cortical surface into a signed
distance function and then computes the mean curvature using
the level-set method [40].

As illustrated in Fig. 2(a) and (b), the mean curvature is
typically negative in the sulcal regions and positive in the
gyral regions. However, simple thresholding may result in a
very noisy segmentation as shown in Fig. 2(c) and (d). To
incorporate regularization into the segmentation, we compute
it as the minimizer of a variational problem with the energy
defined as:

E(Rs, Rg) = −
∑

Vi∈Rs

log ps(f(Vi)) −
∑

Vi∈Rg

log pg(f(Vi))

+ λ

K∑
i=1

∑
Vj∈N(Vi)

δ(Vi,Vj) (1)

The first two terms of the energy are data fidelity terms and de-
fined as the negative log-likelihood of the feature distribution
ps and pg in the sulcal and gyral regions, respectively, both
of which are represented as Gaussian distributions. Given a
cortical surface, we can estimate the mean and variance of
the feature distribution ps from the histogram of all negative
features. Similarly, the parameters of pg are estimated from the
histogram of all positive features. Though it is also possible
to use more sophisticated parametric forms such as Gaussian
mixtures to model the feature distributions, we find in our
experience the distribution of the mean curvature on a cortical
surface is mostly bimodal, as illustrated in the histogram
in Fig. 3. Thus the simple Gaussian models adopted here
provide a fairly good balance between model complexity and
robustness, and they perform very well in practice.

The third term in the energy is for regularization and
penalizes discontinuities between neighboring vertices. For
this purpose, geodesic smoothing was used in [41]. In our
variational approach, we use the Markov random field model
by incorporating an edge indicator function δ(V i,Vj) in the
energy, which is defined as one when Vi and Vj belong to
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(a) (b)

(c) (d)

Fig. 2. The mean curvature of a cortical surface(a)(b) and the segmentation
result obtained by thresholding according to the sign of the mean curva-
ture(c)(d). (a)(c) Lateral view. (b)(d) Medial view.

−1 −0.5 0 0.5 1
0

500

1000

1500

2000

2500

3000

3500

4000

Mean curvature

n

Fig. 3. The histogram of the mean curvature distribution on the cortical
surface shown in Fig. 2 (a) and (b)

different regions and zero otherwise. This energy term is thus
only effective when a vertex Vi and its neighbor Vj cross
the region boundary. The neighborhood N(V i) of a vertex
Vi is defined as its one-ring neighborhood. The regularization
parameter λ is used to balance the weight between data fidelity
and boundary smoothness.

To minimize the energy, we need to find the solution for a
Markov random field problem. Conventionally techniques such
as simulated annealing [42] and iterated conditional modes
(ICM) [43] were used. Here we use the graph-cut method [44],
[45] because it can efficiently compute the global minimum
for such binary optimization problems. For this purpose we
construct a graph G = (V , E) as follows. The set of vertices
in G is defined as V = V ∪ {Ts, Tg}, which is the union
of vertices in the mesh M and two terminal nodes Ts and
Tg. The edge set E in G is composed of two type of edges
as illustrated in Fig. 4: t-links that connect vertices in V to
Ts or Tg, and n-links that connect neighboring vertices in
V . The weight of t-links take into account the data fidelity
term and are defined as w(Vi, Ts) = − log pg(f(Vi)) and
w(Vi, Tg) = − log ps(f(Vi)). The weight of n-links account

Ts

Tg

Sulcal region 
terminal

Gyral region 
terminal

vj

t-link

t-link

vi n-link

Fig. 4. Graph construction for the minimization of the variational energy.

(a) (b)

Fig. 5. Graph-cut segmentation results. (a) Lateral view. (b) Medial view.

for the regularization term and are defined as:

w(Vi,Vj) = λ

if Vj ∈ N(Vi). To compute the graph cut, we use the max-flow
algorithm in [45], which computes the maximum flow from
the sulcal region terminal node to the gyral region terminal
node. The final cut is obtained at those edges with saturated
flows. For graphs with two terminal nodes as the one in Fig. 4,
optimal solutions are guaranteed [44], [45]. From the result of
the graph cut, the region Rs is obtained as the set of vertices
connected to the terminal node Ts, and the region Rg as the
set of vertices connected to the terminal node Tg.

As an example, the segmentation result for the cortical
surface in Fig. 2 is shown in Fig. 5(a) and (b) from the lateral
and medial view, where the parameter is λ = 1. As compared
to the result in Fig. 2(c) and (d), we can see a much cleaner
segmentation has been obtained with graph cuts due to the
incorporation of regularization. The computational process is
also very efficient and typically takes only several seconds.

III. HAMILTON-JACOBI SKELETON OF REGIONS ON

CORTICAL SURFACES

In this section, we construct a graphical representation for
the segmented sulcal or gyral regions on a cortical surface
by computing their Hamilton-Jacobi skeletons. The method of
Hamilton-Jacobi skeleton was originally proposed for shapes
embedded in R

2 or R
3. Using the fast marching algorithm

on triangular meshes [46], we first extend it to compute the
skeleton of an object region on a triangulated surface. We
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then construct a graphical representation of the cortical folding
pattern by decomposing the skeleton into a set of branches.
Based on this representation, a pruning algorithm is devel-
oped to provide a geometrically intuitive stopping criterion to
generate the final skeleton and graphical representation.

A. Skeleton computation

Let O ⊂ R
2 or R

3 be an object region and D be its distance
transform. To compute the Hamilton-Jacobi skeleton of O,
the basic idea is to extract the singularities of the distance
transform D with a robust measure, which is the average flux
of the vector field ∇D at each point of O. The intuition is
that this measure is close to zero for points away from the
skeleton and has large negative magnitude on the skeleton.
The averaging process also has a low pass filtering effect and
thus the skeleton extracted based on the flux measure is robust
to small perturbations of object boundaries. Combined with the
concept of simple points and end points from digital topology,
a flux-ordered and homotopy-preserving thinning algorithm
was developed to robustly extract the skeleton of the object
[1].

For an object region O ⊂ V on the triangular mesh M, we
define its boundary set as:

B(O) = {Vi ∈ O|∃Vj ∈ N(Vi) s.t. Vj ∈ V\O}. (2)

Note that the object region O can be composed of multiple
connected components, such as the sulcal regions on a cortical
surface. The region V\O is denoted as the background region.
As a first step in extracting the skeleton of the region O,
we compute its intrinsic distance transform D on the cortical
surface M by solving the following Eikonal equation

‖∇MD‖ = 1 (3)

given the boundary condition

D(Vi) = 0 ∀Vi ∈ B(O),

where ∇MD is the intrinsic gradient of the distance function
over the manifold M. For numerical implementation, we use
the fast marching algorithm on triangular meshes [46] to solve
Eq. (3) and obtain the distance function D.

From a front propagation point of view, the skeleton of the
region O is where the fronts originated from the boundary set
B(O) meet and form shocks. To detect these skeletal points,
we define at each vertex Vi on M the average flux analogously
to the flux measure in [1] as

Flux(Vi) =

∫
δR

< �N,∇MD > ds∫
δR ds

(4)

where δR is the boundary of an infinitesimal geodesic neigh-
borhood of Vi, �N is the outward normal direction of δR and
∇MD is the intrinsic gradient of D on the manifold M. For
numerical approximation, we evaluate the flux measure at V i

as

Flux(Vi) ≈
1
n

n∑
j=1

<

−−→ViVj

‖ −−→ViVj ‖
,∇MD(Vj) > (5)

(a) (b)

Fig. 6. The flux measure for each vertex of the cortical surface. (a) Lateral
view. (b) Medial view.

(a) (b) (c)

Fig. 7. Three cases of the 1-ring neighborhood of the vertex represented as �,
where • and ◦ are vertices in the object and background region, respectively.

where n is the number of neighboring vertices in the 1-ring
neighborhood of Vi, Vj(j = 1, · · · , n) are vertices in this
neighborhood, and

−−→ViVj is the vector from the vertex Vi to
Vj .

For the cortical surface shown in Fig. 5, we computed
the flux measure for vertices in both the sulcal and gyral
regions. From the result visualized in Fig. 6, a naive way
of locating the skeleton of the sulcal or gyral regions is
then sequentially removing vertices with the flux measure
above certain threshold from the object boundary. To ensure
the skeleton is a thin set homotopic to the object region,
however, we must extend to triangular meshes the concept of
simple points and end points such that a homotopy-preserving
thinning process can be developed.

A point of an object region is called simple if its removal
will not change the topology of the object region, which means
no holes will be created and originally connected components
will not be disconnected. A thinning process is homotopic if
only simple points are removed from the object region [27],
[28], [47]. The concept of simple points was extended to
triangular meshes in [48] and we formalize the definition here
for completeness.

Definition 1: A vertex in an object region of a triangular
mesh is a simple point if its 1-ring neighborhood is composed
of vertices from both the object and background region and
both of them form one connected component.

To illustrate the basic idea of simple points on triangular
meshes, we consider three different cases in Fig. 7 for the
1-ring neighborhood of a vertex. For the cases in Fig. 7(a)
and (b), removing the vertex may either disconnect the object
region or form a hole. On the contrary, both the object
and background vertices in Fig. 7(c) form one connected
component and thus the removal of the center vertex will not
change the topology.

To ensure the final skeleton is a thin set with no interior,
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TABLE I

THE ALGORITHM TO COMPUTE THE HAMILTON-JACOBI SKELETON OF A

SUBSET O ON M

Compute the geodesic distance transform D of O on M.
Compute the flux measure at each vertex in O using Eq. (5).
Initialize a heap H with vertices on the boundary of O using the flux
measure as the sorting key.
do

P = PopHeap(H).
if P is a simple point

if P is not an end point or F lux(P ) > Fthd

Remove P from O.
Insert neighbors of P to H if they are simple points.

else
Mark P as a skeletal point.

end
end

while(H is not empty)

we also extend the notion of end points to triangular meshes
with the following definition.

Definition 2: A vertex in an object region of a triangular
mesh is an end point if only one vertex in its 1-ring neigh-
borhood belongs to the object region.

During the thinning process of computing the Hamilton-
Jacobi skeleton, a preselected threshold Fthd is only applied
to end points of the region, while other points are removed
sequentially according to their flux measures if they satisfy
the condition of being simple points. This ensures that the
final skeleton is a thin set of width one. Summarizing the
above development, the extended algorithm for computing the
Hamilton-Jacobi skeleton on the triangular mesh M is listed
in Table I.

B. Graphical model construction

If we use the sulcal regions as the object region on the
cortical surface, the output of our skeletonization algorithm
is a set of vertices S on M that is homotopic to the sulcal
regions. To construct a graphical model from the skeleton, we
first mark the set of terminal points in S as

TP = {v ∈ S|#(N(v) ∩ S) = 1 or ≥ 3} (6)

which are skeletal points with one or at least three neighboring
vertices in the set S. By breaking the skeleton at terminal
points, we can decompose it into a set of branches B with
each member of B as a connected line segment on the mesh.
These branches form the nodes of our graphical model and
play the same role in our model as the simple surfaces in the
model used in [9], [15]. Two branches b1 and b2 are connected
with each other if ∃vi ∈ TP ∩ b1 and ∃vj ∈ TP ∩ b2 such
that vi ∈ N(vj). With this neighboring relation, we have a
graphical model of sulcal lines to represent the folding pattern
of the cortical surface.

The complexity of the graphical model constructed from
the Hamilton-Jacobi skeleton is controlled by the threshold
parameter Fthd in Table I. To illustrate the effect of this
parameter, we show in Fig. 8 the skeleton of the sulcal regions
shown in Fig. 5 computed by choosing the threshold as the

TABLE II

THE SKELETON PRUNING ALGORITHM

1. Compute the pruning weight for all branches in BI ∪ BT .
2. Find the branch b̂ in BI∪BT with the smallest weight. If the weight

is larger than S0, stop the pruning process; otherwise, eliminate this
branch from the skeleton.

3. If b̂ has two neighbors, merge them into one branch.
4. Update the neighboring relation, branch type, and pruning weight

of branches connected with b̂. Return to step 2.

50th, 25th, and 5th percentile of the flux measures from all
the vertices in the sulcal regions. For each branch in the
skeleton, we mark its terminal points with yellow dots. With
decreasing of the threshold Fthd, we can see more branches
are eliminated, which is especially easy to see from the density
of the yellow dots in the region enclosed by the blue ellipse
in Fig. 8(d), (e), (f). However one problem with using the
threshold Fthd to control the final skeleton is that its relation
to the geometric properties of the skeleton is unclear. For
example, we see the medial end of the central sulcus, pointed
by the blue arrow in Fig. 8(a), (b), (c), is eliminated if the
parameter Fthd is set too small. On the other hand, the branch
pointed by the green arrow in Fig. 8(d), (e), (f) persists in all
three cases, even though the ending part of the central sulcus
identified by the blue arrow is visually more significant. To
avoid this problem, we next develop a geometrically intuitive
pruning algorithm and apply it to the Hamilton-Jacobi skeleton
to generate the final skeleton.

C. Skeleton pruning

Before we start the pruning process, we classify the
branches B of the Hamilton-Jacobi skeleton into three types:

• Independent branch set BI : no neighbors.
• Terminal branch set BT : only one terminal point con-

nected to neighbors.
• Middle branch set BM : both terminal points connected

to neighbors.

By pruning small branches, our goal is to identify major
folding patterns of cortical surfaces. In deciding the pruning
order, we define a significance measure based on the geometric
properties of the branch. For each branch of the skeleton in
the set BI and BT , its significance measure is a combination
of its length and continuity with neighboring branches [8]. For
two neighboring branches b1 and b2, we denote their terminal
points as (V1,1,V1,2) and (V2,1,V2,2), respectively. Since b1

and b2 are neighbors, we assume V2,1 ∈ N(V1,2) and define
the continuity between them as

C(b1, b2) = exp

(
−
〈 −−−−−→V1,2V1,1

‖ −−−−−→V1,2V1,1 ‖
,

−−−−−→V2,1V2,2

‖ −−−−−→V2,1V2,2 ‖

〉)
(7)

where
−−→ViVj denotes a vector from Vi to Vj , and the continuity

measure increases monotonically with respect to the angle
between the two vectors

−−−−−→V1,2V1,1 and
−−−−−→V2,1V2,2. Based on this

continuity measure, we define the pruning weight for each
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(a) (b) (c)

(d) (e) (f)

Fig. 8. The Hamilton-Jacobi skeleton obtained by choosing the threshold Fthd at the 50th percentile(a)(d); 25th percentile(b)(e); and 5th percentile(c)(f) of
the flux measures from all vertices in the sulcal regions.

independent and terminal branch as:

W (bi) =

{
l(bi) if bi ∈ BI

l(bi)maxbj∈N(bi) C(bi, bj) if bi ∈ BT

(8)

where l(bi) is the length of the branch bi, and N(bi) denotes
the set of neighboring branches of b i.

Using this significance measure, we prune the skeleton by
sequentially eliminating the branch with the lowest weight
until all branches left in BI ∪BT have weights greater than a
preselected threshold S0 proportional to branch length. During
this pruning process, the graph structure of the skeleton also
needs to be updated dynamically to take into account the
changing neighboring relation, branch type, and significance
measure of those branches connected to the eliminated branch.
For example, if a branch in BM merges with a branch in
BT , its category is updated from a member of BM to BT .
But since no branches in the set BM is eliminated in any
pruning operation, we still have homotopic skeletons for large
connected components of the object region since the parameter
S0 is typically chosen to be much smaller than the length of
major sulci. By changing the parameter S0, we can trade off
between the complexity of the skeleton and its completeness
in representing cortical folding patterns. As a summary, the
pruning algorithm is listed in Table II.

To illustrate the effect of pruning, we show in Fig. 9 the
skeleton obtained after applying the pruning algorithm with
S0 = 15mm to the Hamilton-Jacobi skeleton in Fig. 8(b)
and (d). We can see that the pruning algorithm is able to
eliminate the small branch at the medial end of the central
sulcus, which is now a single branch in the final skeleton and
can be picked out easily with minimal user interaction. It is
also clear that the small branch pointed by the green arrow
in Fig. 8 (d) is removed successfully. This shows the pruning
algorithm provides a geometrically intuitive way to control the

(a) (b)

Fig. 9. The pruned skeleton. (a) Lateral view. (b) Medial view.

final result of the Hamilton-Jacobi skeleton.

IV. EXPERIMENTAL RESULTS

In this section, we present experimental results to demon-
strate our algorithm. Cortical surface models generated from
two different methods were used in our experiments. For
experiments in section IV-A, B, and C, we used surface models
extracted by an algorithm that deforms a spherical mesh to
the boundary between the gray matter and cerebrospinal fluid
(CSF) [19]. Typical resolution of the mesh is 1mm as measured
by the length of edges. Even though surface models generated
with this method may not capture the deepest parts of sulcal
regions, they have more regularity across population and
can greatly decrease registration difficulties in group studies.
Besides the brain surface between the CSF and gray matter, we
applied our algorithm to two surfaces generated by BrainVISA
[49] in section IV-D, which represent the boundary between
the white and gray matter. For the purpose of analyzing cortical
folding patterns, we have chosen these two surface models
with correct genus zero topology in our experiments, but our
algorithm can also be applied to high-genus surfaces.

In the rest of this section, we first present experimental
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(a) (b) �B = 241, �C = 55 (c) �B = 178, �C = 45 (d) �B = 135, �C = 37

(e) (f) �B = 259, �C = 59 (g) �B = 187, �C = 50 (h) �B = 140, �C = 39

Fig. 10. Sulcal skeletons of two cortical surfaces obtained by choosing λ = 1.0 and three different values for the pruning threshold S0. (a)(e) Cortical
surfaces. (b)(f) S0 = 10mm. (c)(g) S0 = 15mm. (d)(h) S0 = 20mm. For each surface, a circular path is highlighted in green. The number of branches(�B)
and connected components(�C) are listed below the skeletons.

results to illustrate the impact of parameters in our algorithm
on the generated skeletons. The accuracy of using skeletons to
represent cortical folding patterns is validated by comparing
manually labeled major sulci to the skeleton of the sulcal
regions on 20 cortical surfaces. To illustrate that our algorithm
can be applied to general regions on triangulated surfaces,
we construct the graphical representations of gyral regions in
section IV-C. After that, experimental results on two cortical
surfaces generated by BrainVISA are presented.

A. Parameter selection

There are three parameters in our method that affect the
final skeleton. The regularization parameter λ in the graph-cut
algorithm controls the smoothness of the segmentation result.
The threshold parameter Fthd in the Hamilton-Jacobi skele-
tonization algorithm and S0 in the final pruning process both
affect the complexity of the final skeleton. As we illustrated in
Fig. 8, important branches of the sulcal pattern could be lost
if the parameter Fthd is too small, thus in practice we fix its
value as the 25th percentile of all flux measures in the sulcal or
gyral regions and use S0 to control the complexity of the final
skeleton. Our experience suggests that this provides a good
balance between skeleton complexity and the completeness in
representing cortical folding patterns. So overall we use the
two parameters λ and S0 to control the final result.

The parameter λ controls the smoothness of the segmen-
tation globally and it should be chosen carefully to prevent
some sulcal regions, especially on the medial aspects, from
being eliminated. For cortical surface models generated with
the method in [19], we find in our practice selecting λ = 1.0
provides very good results in terms of boundary smoothness
and capturing shallow sulcal regions. Note that a different
value might be more suitable for cortical surface models
generated by other tools. In this experiment, we computed the
skeleton of the sulcal regions, which we denote as the sulcal
skeleton, for two cortical surfaces shown in Fig. 10(a) and (e).
With the value of the parameter λ fixed at 1.0, we chose three

different values for the pruning threshold as S0 = 10mm,
15mm, and 20mm. The results of the computed skeletons for
the two surfaces are plotted in Fig. 10(b)-(d) and (f)-(h). For
the sulcal skeleton of both cortical surfaces, a circular path is
plotted in green to illustrate the homotopy-preserving property
of the skeleton.

To measure the complexity of the sulcal skeletons, we calcu-
lated both the number of branches and connected components
in the skeletons. The results are listed below each skeleton in
Fig. 10(b)-(d) and (f)-(h). With the increase of S 0, we can see
both measures decrease steadily. This quantifies the visualized
reduction of complexity that we observe with the increase of
S0. For the purpose of analyzing cortex folding patterns, it
is important to point out that the selection of the pruning
threshold S0 should depend on the context of the application.
For the analysis of neuroanatomy, a relatively smaller S0 might
be useful to have a more complete representation of anatomical
structures. On the other hand, we may choose a relatively
larger S0 to generate a compact representation of the sulcal
regions for the detection of major sulci.

B. Validation with manually labeled major sulci

We demonstrated in our previous results that skeletons of
sulcal regions provide an explicit, graphical representation of
cortical morphometry. In this experiment we evaluate quantita-
tively the validity of using skeletons to represent cortical fold-
ing patterns by measuring the distance from manually labeled
sulci to sulcal skeletons. The test data used in this experiment
are left hemispheric cortical surfaces that were extracted from
the 3D MRI images of the 20 control subjects reported in [50].
The sulcal skeletons of the 20 surfaces were computed with
the same set of parameters λ = 1.0, S0 = 15mm. For each
subject, 12 major sulci were manually labeled, which include
the sylvian fissure, central, precentral, postcentral, superior
frontal, inferior frontal, intraparietal, and superior temporal
sulcus on the lateral surface, and the calcarine, occipital,
cingulate, and olfactory sulcus on the medial surface. On the
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(a) (b)

(c) (d)

Fig. 11. An illustration of the 12 major sulci used in our experiment. (a)(c) Lateral side. (b)(d) Medial side. The major sulci are overlaid with sulcal skeletons
in (c) and (d), where the sulcal skeletons are plotted as black lines.

TABLE III

QUANTILE STATISTICS FOR THE DISTRIBUTION OF THE MINIMAL DISTANCES FROM MANUALLY TRACED MAJOR SULCI TO SULCAL SKELETONS. THE

UNIT OF THE DISTANCE IS MILLIMETER.

Cent. PreC. PostC. SupF. InfF. IntP. Sylv. SupT. Calc. OccP. Cing. Olfa.
50th percentile 0.47 0.51 0.61 0.62 0.48 0.65 0.42 0.40 0.36 0.22 0.22 0.78
70th percentile 0.71 0.85 0.98 1.05 0.85 0.97 0.69 0.63 0.51 0.32 0.31 1.22
90th percentile 1.27 1.71 1.83 2.13 1.80 1.73 1.28 1.29 0.93 0.56 0.54 1.92

same cortical surface in Fig. 10(a), we plot the 12 major sulci
in Fig. 11(a) and (b) as an illustration. These major sulcal lines
were traced manually on the cortical surfaces. Each sulcal line
was discretized into 100 evenly spaced points. For the same
major sulcus on all 20 surfaces, we first computed the minimal
distance from each point on the manually traced curve to the
sulcal skeleton of the corresponding cortical surface, and then
calculated the 50th, 70th, and 90th percentile of these distances
to summarize their distribution. The results for all 12 sulci are
shown in Table III. We can see that 90% of the points on all
major sulci except the superior frontal sulcus have a minimal
distance less than 2mm to the sulcal skeleton. Even for the
superior frontal sulcus, the 90th percentile is only slightly
larger than 2mm. Since some parts of manually labeled major
sulci can cross gyral regions, the results in Table III show very
good agreement between manually labeled sulcal lines and
automatically detected sulcal skeletons. As an example, the
sulcal skeletons in Fig. 10(c) are overlaid with the major sulci
in Fig. 11(c) and (d). For better visualization of some buried
parts of the sulcal skeletons, we have set the transparency of

the cortical surface to 0.75.
The results of this experiment first validate the usage

of sulcal skeletons to develop semi-automatic tools for the
extraction of major sulci. Once the skeleton is computed,
only very few mouse clicks are necessary to pick out each
sulcus and this can speedup the manual labeling process. More
importantly, this experiment demonstrates sulcal skeletons can
capture cortical folding patterns represented by major sulci
very accurately and provides quantitative justification for us
to perform graph-based analysis of cortical morphometry.
Besides the geometrical information that has been represented
explicitly in the skeletons, the graphical models derived from
sulcal skeletons can act as substrates for other features such as
depth, size, and orientation [9], [15] so more detailed analysis
of cortical morphometry can be performed.

C. Gyral skeletons

For algorithms that rely on the detection of end points to
extract sulcal lines [37], sharp corners are assumed to exist for
the region of interest. One advantage of our skeletonization
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(a) (b)

Fig. 12. Visualization of the gyral skeleton, where terminal points of each
branch are marked as yellow dots. (a) Lateral view. (b) Medial view.

approach is that it does not have such limitations and can be
applied to general regions. In this experiment, we demonstrate
this generality by applying it to gyral regions on cortical
surfaces.

If we consider the sulcal regions as lakes on the cortical
surface, the gyral regions are then the bank that surrounds the
lakes, thus they do not have obvious ending parts. For the
cortical surface in Fig. 2, the same process of computing the
sulcal skeleton is applied to the gyral regions. Using identical
parameters λ = 1.0 and S0 = 15mm, our method successfully
extracts the skeleton of the gyral regions, which we denote as
the gyral skeleton, as shown in Fig. 12.

Similar to sulcal skeletons, gyral skeletons also can be used
as landmarks in cortical mapping. For example, the anterior
part of the superior temporal gyrus, as identified by the blue
arrow in Fig. 12(a), is represented as a curve and used as one
of the six stable landmarks in the construction of population
based cortical atlas [18]. The graphical representation of gyral
patterns could also be combined with sulcal skeletons to
provide a complete characterization of cortical morphometry
since gyri are more commonly used than sulci in describing
neuroanatomy.

D. Application to the gray matter/white matter interface

In this experiment, we applied our algorithm to compute the
sulcal skeletons of two cortical surfaces representing the inter-
face between the gray matter and white matter. These surface
models were generated by the software package BrainVISA
[49] and guaranteed to be of genus zero topology. As shown
in Fig. 13(a) and (d), they capture the deep sulcal regions very
well.

For these two surfaces, we successfully computed their
sulcal skeletons by using the same parameters λ = 2.0
and S0 = 15mm. Compared with previous examples, a
larger λ was chosen to introduce more regularization into the
segmentation process as the surfaces here are more convoluted.
The sulcal skeletons of the surface in Fig. 13(a) are plotted in
Fig. 13(c) and (d) from the lateral and medial views, where
the sulcal regions are color mapped as black on the surfaces.
The end points of each branch are also marked as yellow dots
to visualize the graph structure of the skeletons. For better
visualization of the buried parts of the skeletons, we have set
the transparency of the surface to 0.75 in these plots. Similarly
the sulcal skeletons of the surface in Fig. 13(d) are plotted in
Fig. 13(e) and (f). For both surfaces, we can see the sulcal
skeletons provide very good characterizations of the folding

patterns and they demonstrate the generality of our algorithm
to different surface models of the cortex.

V. CONCLUSION

A novel approach of characterizing cortical geometry is
proposed by computing the Hamilton-Jacobi skeletons of the
sulcal and gyral regions on triangulated cortical surfaces.
By decomposing skeletons into a set of branches, we can
build graphical representations of cortical folding patterns. Our
method is designed in the context of analyzing the geometric
properties of cortical surfaces, but it is also applicable to com-
pute the skeleton of regions on general triangulated surfaces.

In our current work, we are developing a system for
the automatic labeling of major sulci based on the method
proposed in this paper. Using the skeleton of the sulcal regions
on a cortical surface, our system generates a sample space for
each major sulcal line. The automated labeling is then realized
via inferencing over these sample spaces with probabilistic
models and machine learning techniques, and very promising
results have been obtained [51]. Following the work in [9],
[15], we are also investigating the approach of inferencing
directly over the graphical models of skeleton branches that
are constructed as proposed in section III.B. Not only can this
help the detection of major sulci, but also holds great potential
for providing new, graph-based techniques of studying cortical
morphometry.
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