Neuroimaging biomarkers track brain degeneration in 676 subjects with Alzheimer’s disease, mild cognitive impairment, and healthy controls

Laboratory of Neuro Imaging
Xue Hua, Suh Lee, Alex Leow, Igor Yanovsky, Arthur W. Toga, Michael W. Weiner, Paul M. Thompson, et. al.
and the Alzheimer's Disease Neuroimaging Initiative
Alzheimer's Disease Neuroimaging Initiative (ADNI)

• ADNI is a large five year research project
• 200 AD, 400 MCI and 200 elderly controls
• http://www.adni-info.org/
• http://www.loni.ucla.edu/ADNI/
Tensor-Based Morphometry (TBM) - Cross-sectional Design -

MDT \rightarrow Jacobian Map \rightarrow Individual Scan

$\begin{pmatrix}
\frac{\partial(x-u)}{\partial x} & \frac{\partial(y-u)}{\partial y} & \frac{\partial(z-u)}{\partial z} \\
\frac{\partial(x-u)}{\partial y} & \frac{\partial(y-u)}{\partial y} & \frac{\partial(z-u)}{\partial y} \\
\frac{\partial(x-u)}{\partial z} & \frac{\partial(y-u)}{\partial z} & \frac{\partial(z-u)}{\partial z}
\end{pmatrix}$

$\det J(r) > 1$ Volume Expansion

$\det J(r) < 1$ Volume Loss
Tracking brain degeneration in 676 subjects with AD (N=165), MCI (N=330), and healthy controls (N=181)

- AD vs. CTL
- MCI vs. CTL
- AD vs. MCI

Baseline TBM correlate with Sum-of-Boxes CDR

Baseline TBM correlate with FUTURE CHANGES in Sum-of-Boxes CDR

Baseline TBM correlate with MMSE

Association between Jacobian values and conversion to AD in a year

MCI (n = 186)

40 MCI subjects became AD after a year, corresponding to a conversion rate of 21.5%

ApoE and brain structure

Tensor-Based Morphometry (TBM) - Longitudinal Design -

$\begin{vmatrix}
\frac{\partial(x-u_x)}{\partial z} & \frac{\partial(y-u_y)}{\partial z} & \frac{\partial(z-u_z)}{\partial z} \\
\frac{\partial(x-u_x)}{\partial y} & \frac{\partial(y-u_y)}{\partial y} & \frac{\partial(z-u_z)}{\partial y} \\
\frac{\partial(x-u_x)}{\partial x} & \frac{\partial(y-u_y)}{\partial x} & \frac{\partial(z-u_z)}{\partial x}
\end{vmatrix}

\det J(r) > 1 \text{ Volume Expansion}

\det J(r) < 1 \text{ Volume Loss}
AD (N=104) versus Normal (N=157)
- Mean Atrophy Rates -

MCI (N=254) versus Normal (N=157)

- Mean Atrophy Rates -

Region-of-interest (ROI)

Temporal lobes

Statistical ROI derived from an independent training sample of 22 AD patients

Estimated sample sizes (n80)

- needed to detect a 25% reduction in the mean annual change with a two-sided test and $\alpha=0.05$ at 80% power, for a two-arm study

$$n = \frac{2\sigma^2_D \left(z_{1-\alpha/2} + z_{\text{power}} \right)^2}{\left(0.25 \bar{\beta}\right)^2}$$

➢ Sum-of-boxes Clinical Dementia Rating (CDR) gives best power among the clinical scores, but the TBM method is 9 times better

<table>
<thead>
<tr>
<th></th>
<th>AD</th>
<th>MCI</th>
</tr>
</thead>
<tbody>
<tr>
<td>TBM</td>
<td>48</td>
<td>88</td>
</tr>
<tr>
<td>CDR-SB</td>
<td>408</td>
<td>796</td>
</tr>
<tr>
<td>ADAS-Cog</td>
<td>619</td>
<td>6797</td>
</tr>
<tr>
<td>MMSE</td>
<td>1078</td>
<td>3275</td>
</tr>
</tbody>
</table>

The rates of temporal lobe atrophy correlate with the levels of CSF biomarkers- A longitudinal study of 100 subjects (20 AD, 40 MCI and 20 controls)

Summary

• TBM as a neuroimaging marker
 – Correlate with clinical decline, CSF biomarkers, and predict future conversion to AD

• Using TBM as a potential surrogate marker, only 48 AD and 88 MCI subjects are needed to detect 25% slowing of disease in clinical trials (9x better than best clinical score)
Acknowledgements

• **UCLA ADNI Team**
 – Paul Thompson PhD (PI)
 – Arthur Toga PhD (PI)
 – Suh Lee
 – Igor Yanovsky PhD
 – Alex D. Leow MD PhD
 – Ming-Chang Chiang
 – Yi-Yu Chou MS
 – April J. Ho
 – Boris Gutman

• **Non-UCLA Collaborators**
 – Clifford R. Jack Jr MD
 – Matt A. Bernstein PhD
 – Eric M. Reiman MD
 – Danielle Harvey PhD
 – John Kornak PhD
 – Norbert Schuff PhD
 – Gene E. Alexander PhD
 – Michael W. Weiner MD

• **ADNI (PI: Michael Weiner; NIH grant number U01 AG024904)**
 – National Institute of Aging
 – National Institute of Biomedical Imaging and Bioengineering (NIBIB)
 – Foundation for the National Institutes of Health,
 – Pfizer Inc.
 – Wyeth Research
 – Bristol-Myers Squibb
 – Eli Lilly and Company
 – GlaxoSmithKline
 – Merck & Co. Inc.
 – AstraZeneca AB
 – Novartis Pharmaceuticals Corporation
 – Alzheimer’s Association
 – Eisai Global Clinical Development
 – Elan Corporation plc,
 – Forest Laboratories
 – Institute for the Study of Aging (ISOA),
 – U.S. Food and Drug Administration

• **Algorithm development was also funded by the NIA, NIBIB, the National Library of Medicine, and the National Center for Research Resources (AG016570, EB01651, LM05639, RR019771 to PT).**