Detecting brain growth patterns in normal children using tensor-based morphometry

Xue Hua, Alex D. Leow, Jennifer G. Levitt, Rochelle Caplan, Paul M. Thompson and Arthur W. Toga
Department of Neurology, Laboratory of Neuro Imaging, Division of Brain Mapping, University of California at Los Angeles School of Medicine, Los Angeles, California 90095-1769

Introduction: Previous magnetic resonance imaging (MRI)-based volumetric studies have shown age-related increases in the volume of total white matter and decreases in total gray matter volume in normal children. However, detailed maps of dynamic growth patterns in the human brain are not yet available. We studied serial structural MRI scans (1.92 to 4.52 year scan interval) from thirteen healthy children between the ages of 6 and 19. Based on the Jacobian map of the deformation field, an annualized tissue change map was then computed for each individual. An example tissue change map for an eight-year-old boy (initial scan conducted at age six), showed an averaged white matter growth in the frontal lobe (1% increase in the left inferior frontal lobe, 1.3% in the left middle frontal lobe, and 1% in the left superior frontal region). The right frontal white matter followed the same growth pattern with a slightly lower rate of increase. We also detected up to 5% tissue growth in the somatosensory and motor cortices. To study the growth pattern in this age group, we conducted voxel-wise one-sample t-tests of the twelve annualized Jacobian maps. The result revealed a significant tissue growth in frontal and parietal lobe white matter (P<0.05). We also examined the age effect by fitting a linear model, and the result suggested slowing down of the growth rate over time in regions with the greatest white matter growth. In addition to the age effect, we studied gender effect by adding one more correlation coefficient to the linear regression model. The result revealed uneven distribution of tissue growth in boys and girls. Our study demonstrated that a tensor-based Jacobian map enables the detection of regional growth with high resolution.

Method: Thirteen children were selected and received two magnetic resonance imaging (MRI) scans with scan intervals between 1.92 and 4.92 years (age at scan 1: 6.5 - 15.4 years, age at scan 2: 8.69 - 18.57 years). Seven boys and six girls were included in the study. High-resolution three-dimensional T1-weighted SPGR (spoiled GRASS) MRI scans were collected from all subjects using GE signa scanner with 1.5T magnet. The follow-up scan of each subject was first rigidly aligned to the baseline scan. Both scans were then aligned to the standard space as defined by the International Consortium for Brain Mapping (ICBM) using a nine parameter affine linear transformation. A non-linear elastic intensity-based registration algorithm was used to deform the source image to the target by maximizing the mutual information between the deforming source and target. Same non-linear algorithm was also used to register all subjects into a common space defined by ICBM. The transformation parameters were then applied to corresponding Jacobian maps to register all the Jacobian maps into the standard coordinates.

Conclusion: Tensor-based Jacobian map is a reliable method to detect regional tissue changes during development.