Low nadir CD4+ counts and disrupted MRS brain metabolite levels are associated with reduced brain volume in HIV/AIDS

The HIV Neuroimaging Consortium Cohort Study
Funded by NINDS NS36524

Xue Hua¹, Christina P. Boyle¹, Priya Rajagopalan¹, Suh Lee³, Arthur W. Toga¹, Jaroslaw Harezlak², Constantin Yiannoutsos², David Tate², Ron Cohen⁴, Bradford Navia⁵, Paul M. Thompson¹ and the HIV Neuroimaging Consortium

¹Laboratory of Neuro Imaging, UCLA School of Medicine, Los Angeles, CA, USA
²Indiana University School of Medicine, Indianapolis, IN, USA
³Brigham and Women’s Hospital, Boston, MA, USA
⁴Miriam Hospital, Providence, RI, USA
⁵Tufts University School of Medicine, Neurology and Community Health, Boston, MA, USA
An emerging body of data suggests that brain injury and cognitive impairment are common events in the aging, chronically infected and treated population.

The HIV Neuroimaging Consortium was formed to:

- Prospectively map the course of functional and structural injury and its relation to cognitive impairment in the setting of cART and chronic disease.
- Identify host and disease-related factors contributing to brain injury and cognitive impairment in the setting of cART and chronic disease.
- Identify biomarkers predictive of risk for brain injury and cognitive impairment, its progression and response to treatment.
The HIV Neuroimaging Consortium Cohort Study: Multimodal Imaging Strategy

Benefits

- An integrated multimodal imaging strategy (MRS, DTI, MRI) provides a robust and quantitative in vivo approach to identify patterns and trajectories of cerebral injury over the course of the disease:
 - Interrogate the HIV brain across multiple levels
 - Cellular injury and response - MRS
 - Fiber tract morphology and connectivity - DTI/DT/PT
 - Cortical thickness maps, volumes - MRI
 - Examine the HIV-infected brain as a distributed network of interrelated pathological processes in relationship to cognitive and functional outcomes
 - Uncover useful diagnostic and prognostic markers for both clinical practice and clinical trials
Design and Methods

- Prospective study of ~300 HIV-infected subjects across 7 centers
 - Brain bank centers at UCLA, UCSD and Harbor-UCLA
 - ACTG and primary HIV clinics at Colorado, Pittsburgh, Harbor, Stanford

- Inclusion criteria:
 - Nadir CD4+ T-cell counts ≤200 cells/μl
 - ART for at least 12 weeks

- Exclusion criteria:
 - Confounding neurological, psychiatric and medical disorders (hepatic, renal, diabetes)
 - Active drug use
Subjects:
- N=210 patients with HIV/AIDS
- Age: 48.6±8.4 years
- Sex: 175 men (83%) and 35 women (17%)
- Race: 148 Caucasian (70%), 54 African-American (26%), 6 Native American and American Indian (3%), and 2 Asian (1%)

MRI: T1-weighted MPRAGE sequence
- TE = 3.57 ms, TR = 2730 ms, flip angle = 7, FOV = 256×256 mm, 1×1×1 mm resolution

MRS: Single-voxel ¹H spectra
- Customized PRESS sequence
- Voxels: 6 cc in volume in midline frontal gray matter, right or left frontal white matter in the centrum semiovale, and right or left basal ganglia
- Water suppressed spectra: TE/TR = 35/3000 ms, bandwidth =2500 Hz, 128 averages, NEX = 8
- The metabolite ratios NAA/Cr, Cho/Cr, MI/Cr, and Glx (=Glu + Gln)/Cr were determined using the LC Model spectral analysis software and an unsuppressed water FID at TE = 30 ms for eddy-current correction
- Inter-individual variations: 10% to 15%
- Intra-subject variability: 3% to 8%
A high-resolution average brain template was created to represent common anatomical features for the study group. Individual brain images were non-linearly aligned to the brain template, using an inverse-consistent registration algorithm. Maps were created to show regions of volume deficit or excess relative to the brain template, reflecting, in part, profiles of neurodegeneration.
Methods

- At each voxel in the brain, multiple regression was used to assess associations between regional brain volumes and
 - demographic variables: age, sex, and race
 - immune system measures: current and nadir CD4+ T-cell counts (cells/μl)
 - brain metabolite levels: absolute concentrations of N-acetyl aspartate (NAA), Creatine (Cr), Choline (Cho), myo-inositol (MI), glutamate and glutamine (Glx), and ratios of NAA/Cr, Cho/Cr, MI/Cr, Glx/Cr in the frontal white matter, basal ganglia, and medial frontal cortex

- Maps of associations were declared significant if they controlled the false discovery rate at 5%
Results

- We did not detect an age effect in this cohort, but both sex (FDR $q=0.05$, critical $P=0.006$) and race (critical $P=0.03$) were significantly associated with regional brain volumes; a greater amount of brain atrophy was shown in women vs. men, and African-American vs. Caucasian.

- After controlling for age, sex and race, lower nadir CD$_4$+ count, but not current CD$_4$+ count, was associated with reduced brain volumes (critical $P=0.02$).

Lower nadir CD$_4$+ count was associated with greater atrophy, in a broad region encompassing the frontal/parietal white matter bilaterally; for each 25-point reduction in nadir CD$_4$+, there was a 1-2% greater deficit in frontal white matter volumes (beta values range from 0.04-0.08%).
Brain metabolite levels were associated with brain volumes

- **Lower levels of NAA** in the frontal white matter (critical $P=0.01$)
- **Lower levels of NAA** in the basal ganglia (critical $P=0.01$)
- **Increased level of Glx** in basal ganglia (critical $P=0.02$)

were associated with lower brain volumes.
Results

- Regional brain volumes were associated with the ratios of brain metabolites
 - Cho/Cr in frontal white matter (critical $P = 0.002$)
 - MI/Cr in frontal white matter (critical $P = 0.01$)
 - NAA/Cr in basal ganglia (critical $P = 0.003$)
 - Glx/Cr in basal ganglia (critical $P = 0.01$).
Brain atrophy was associated with immunosuppression and alterations in brain metabolites that reflect neuronal integrity.

Disruption in these metabolites may lead to subsequent structural loss.

This supports a model of brain injury that implicates frontal/striatal pathways in the pathogenesis of HIV-associated cognitive impairment.

The result on nadir CD4+ expands on recent cross sectional studies linking nadir CD4+ to cognitive impairment (Heation et al., 2011; Valcour et al., 2011).

TBM analysis of brain MRI provides a sensitive and noninvasive measure of HIV-associated brain atrophy, potentially useful to aid early detection as well as early intervention.

Future studies will use longitudinal TBM to measure regional brain change over time.
Acknowledgements

HIV Neuroimaging Consortium

- Tufts: Patricia Hibberd, Anne Marie Fiorino, Lisa Gualtieri, Brad Navia
- Indiana: Constantin Yiannoutsos, Jaroslaw Harezlak, Janetta Matesan, Deming Mi, Andrew Borst
- Brigham: David Tate, Charles Guttman
- Brown: Ron Cohen, Assawin Gongvatana, Hernando Ombao, Deming Mi, Andrew Borst
- Hawaii: Steven Buchthal
- Colorado: Thomas Campbell, Mark Brown, Sally Canman
- Pittsburgh: Deborah Mcmahon, Christine Tripolica
- Rochester: Giovanni Schifitto, Jianhui Zhong, Michelle Gaugh, Tong Zhu
- Stanford: Yuen Tso, Shirley Paulose, Anne Sawyer
- Harbor UCLA: Eric Daar, Angela Grbic, Lisa Siqueiros, Mario Guerrero, Edward Lozano
- UCLA: Elyse Singer, Jeff Alger, Paul Thompson, Xue Hua
- UCSD: Mike Taylor, Scott Letendre, Robert Heaton
- UNC: Kevin Robertson

huaxue@ucla.edu thompson@loni.ucla.edu