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Abstract. We present the first Support Vector Machine classification
study using the feature space of shape invariants of hippocampal sur-
faces. Our shape invariants are based on rotationally invariant proper-
ties of spherical harmonics (SPH). A global conformal map is used for
parameterization. Leave-one-out testing on 49 Alzheimer(AD) and 63
elderly control subjects yielded 75.5% sensitivity and 87.3% specificity
with 82.1% correct overall.

1 Introduction

Numerous studies have explored the effect of Alzheimer’s disease on brain struc-
ture. These generally undertake one of two goals: localizing AD’s effect on brain
anatomy or classifying subjects according to neuroanatomical differences be-
tween patients and controls. So far, the use of spherical harmonics in these
studies has been entirely for the purpose of surface alignment and thus has be-
longed in the former category. To the best of the authors’ knowledge, this is the
first work to employ SPH-based shape invariants for classification.

Our general procedure may be summarized as follows: given a family of hip-
pocampal surfaces, we map them to sphere in a rotation-preseving manner, in
this case using the global conformal mapping. Next, we compute their spherical
harmonic spectra and convert these spectra into an invariant shape desription.
Finally, we apply the leave-one-out method with Support Vector Machines and
feature selection to the shape description for validation.

The remainder of the paper follows this organization: in the first section we
present some previous studies and discuss their relevance to the present work;
in the second section, we describe how we extracted our hippocampal surfaces;
in the third, we describe our exact means of feature generation; next, we give a
synopsis of our use of SVM; in the fifth section we present empirical results; in
the sixth we conclude the paper.

2 Previous Work

SPHARM has been the most common use of spherical harmonics in neuroimag-
ing. Though the term is used increasingly loosely, it usually stands for a three-
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step process, following any known spherical parameterization of a surface: esti-
mating SPH coefficients of x, y, and z-components with a least-squares proce-
dure, normalizing the orientation of the first-order ellipsoid and reconstructing
the surface at regularly spaced points on the sphere [1, 2]. To refine such a coarse
registration, Shen [2] also used a variant of the ICP algorithm to register hip-
pocampal shapes in an AD study. Here, point correspondences were established
by quickly shifting the surface signal on the sphere and minimizing the RMSD
distance, while spatial alignment was done with a quaternion-based method.
This method made use of a property of spherical harmonics that makes them
unique among the possible L2 bases on the sphere - they form a direct sum of
orthogonal subspaces which are invariant to rotation. This fact is also key in our
application of SPH in forming shape invariants.

In most AD classification studies to date, volume-based features, such as grey
matter probability maps, were used with a Support Vector Machine classifier to
predict diagnosis [3–5]. In the best ones, overall leave-one-out accuracy was 89-96
%. See this survey [6] for a good overview. More relevant to the current study,
some recent works instead classified disease according to hippocampal shape-
based features [7, 8], with pointwise displacements forming the feature set. [7]
specifically used patch-averages of local displacement vectors projected onto the
average normal. SVM was then applied to these local features to separate AD
subjects from controls. Here, the best leave-one-out accuracy reached 94.9 %.

In a digression, we would like to say that several reviewers in the past have
claimed that SVM and spherical harmonic representation have already been
combined for classification. This, unfortunately, stems from a misunderstanding
of what ”spherical harmonic representation” means. In every classification pa-
per on hippocampal shape (or any other neuroanatomical shape) we have found,
spherical harmonics are simply used to align the surfaces before returning to a
spatial representation for classification. We use a spectral feature space for clas-
sification. As an example, consider this Schizophrenia study [9]. Here, SPHARM
was employed for surface alignment and vertex-wise displacement vectors for
classification, after feature pruning with PCA. The best accuracy here was 77%.

Davies et al. have done yet another Schizophrenia study using the minimal
distance length approach to statistically align hippocampal parameterizations
in [10]. For classification, Linear Discriminant Analysis (LDA) is used to find the
discriminant vector in the feature space for distinguishing diseased subjects from
controls. The work is compared to SPHARM, with both approaches yielding a
Students t-statistic for the group difference of less than 2.3 along the discriminant
vector. The authors claim that an SVM classifier on this feature space yielded
practically the same results. s

An interesting study by Gorczowski, Styner, et al. [11]recently appeared on
classification using multi-object complexes. Their approach is advantageous to
ours in that it takes into account the relative position of several subcortical
structures with respect to each other, while we can only combine several shape
invariants from every structure individually. This study, however, acknowledged
that the classification results are improved when pose is eliminated from the fea-
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ture space and only structure-intrinsic features (here, radii of m-reps developed
by Gerig, Styner and co-workers) are used. Though the validation method was
more robust than ours, the accuracy is inferior: 75%.

Since the number of features in these studies is much larger than in the
present paper, a very robust feature selection is required as a preprocessing step
before SVM can give reasonable results. The usual and evidently quite reliable
means of doing this is the recursive feature elimination (RFE), as in [3, 4, 7].
Here, an SVM model is iteratively trained and at each step the weakest (least-
weighted) feature is removed. This is repeated until the classification rate or the
particular cost function of the SVM model stop increasing. Though this method
is SVM-centric and well-suited for the problem, it is more expensive than our
simple feature selection technique. Using the fact that our feature space is already
an order or two of magnitude smaller (N = 510), we have simply used a Students
t-statistic threshold. This nave feature selection technique may explain why our
accuracy is inferior to some of the best results in the studies we mention here.

A unifying aspect of the studies above is their emphasis on locally-based
features: in each case a feature corresponds to either a voxel or a point on the
surface. While this facilitates visualization, it may not take full advantage of
some pattern a shape exhibits globally. For this reason we have chosen a feature
set in which each feature represents a unique aspect of the entire hippocampal
shape rather than an individual point. Thus, each feature may represent shape
variation in multiple locations, increasing its discriminative power. A further
advantage of our feature set is that it does not require registration. Since each
feature vector is entirely intrinsic to the shape, we require no pre-alignment or
point correspondence.

[12] perhaps comes closest to our approach in that it uses two non-local shape
features to classify Schizophrenia subjects and controls. This study does indeed
use a spherical harmonic representation, specifically SPHARM, to align the left
and flipped right amygdala-hippocampal surfaces for each subject. However, once
the shapes are aligned, the study again returns to a simple spatial measure (not
spherical harmonics or any features derived from them) to classify the shapes.
Two asymmetry measures, volume difference and mean square distance (MSD)
with the volume normalized, are used in an SVM classification. A good accuracy
of 87 % is achieved.

3 Surface Extraction

Initially, structural MRI images are automatically converted into binary hip-
pocampal masks with the help of the recent Auto Context Model (ACM) [13].
ACM uses a few hand-traced ROI examples as a training set for AdaBoost to
create a voxel-level classification function. We then convert the masks to a signed
distance function and apply topology-constrained mean curvature flow following
Han’s TGDM algorithm [14]. We ensure that our initialization has the topology
of a closed genus-zero surface, thus guaranteeing a surface of correct topology
upon extraction. However, since we use Marching Cubes to generate a triangle
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mesh from the level set function, our resulting mesh has far more triangles than
the level of detail justifies, many of which are highly acute. Applying our spher-
ical parameterization algorithm directly to this mesh would take a long time
with suboptimal results. To resolve this issue we apply QEM remeshing [15] to
simplify all meshes to 5000 triangles, and subdivide the result to 20000 triangles
while applying local smoothing. The first step greatly reduces subsequent com-
putation time (MC meshes tend to have between 40000 and 80000 triangles),
while the second ensures triangle niceness, important for achieving the best pa-
rameterization. Lastly, a visual check is done on each mesh to ensure that the
original masks correspond to a hippocampal shape.

4 Generation of Shape Invariants

Following our surface extraction from MRI data, we proceed to generate an
invariant description of each shape. Our generation consists of four steps: (1)
spherical conformal parameterization following [16],(2) sampling the mesh at
regularly spaced spherical coordinates, (3) computing SPH coefficients of each
surface with the help of a spherical fft [17], (4) computing shape invariants from
SPH coefficients.

We now formulate the conformal mapping problem. Define triangle mesh
M ≡ (K, g), where K is a simplicial complex and g : |K| → R3 defines the shape
of the mesh in space. Let i, j, {i, j} ∈ K be vertices and their corresponding
edge. Then, given f , g : M → R

3, we define the inner product on M by

< f , g >=
1

2

∑

m∈{x,y,z}

∑

{i,j}∈K

ki,j(fm(i) − fm(j))(gm(i) − gm(j)) (1)

and the energy of f by

E(f ) =< f , f > (2)

It is well known [16] that setting the string energy weights ki,j to 1

2
(cot(α)+

cot(β)), where α and β are angles opposite {i, j}, yields the equation for har-
monic energy, whose minimization leads to a conformal map in the genus-zero
case. The cotangent weights are precisely the cause of numerical instability from
highly acute triangles. Imposing the additional constraints

(a) |f |2 = 1

(b)
∫

M
fdA∫

M
dA

= 0 (Center of mass constraint)

ensures that the mapping is to S2.
We reformulate this minimization problem in order to apply the faster con-

jugate gradient method. Since we may no longer check the constraints at every
iteration of naive gradient descent, the energy to minimize becomes

E(f , λ, ν) =
1

2
Eharmonic(f) + λEsphere(f) +

ν

2
Ecenter(f ) (3)
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=
1

2

∑

i6=j

ki,j |f i − f j |
2 + λ[

∑

i∈K

|f i|
2 − 1] +

ν

2
|
∑

i∈K

f iAi|
2

where λ, ν are Lagrange multipliers and f i are the spherical mesh veriteces.
Computation time for a 20000 triangle HP mesh requires on average about 10
minutes with the conjugate gradient method and roughly 45 minutes with the
gradient descent method on a 2.41 GHz, 1 Gb RAM Gateway PC.

Following the spherical parameterization, we sample the inverse map at
θj = π(2j + 1), φk = 2π(k)/2B, 0 ≤ j, k < 2B. For this study, we set the
bandwidth B to 256. Although in general, spherical sampling requires O(mn)
operations, where m and n are the numbers of triangles of the original and the
new mesh, taking advantage of the regularity of our samples reduces this num-
ber to O(m + n). In conjunction with fast spherical harmonic transforms, this
means that we can find SPH coefficients as quickly as the SPHARM least squares
approximation, while reaching much higher bandwidth.

Once sampled, our meshes are put through the spherical fft algorithm of [17]
to get the SPH coefficients of x, y and z components. We now give a brief review
of spherical harmonics.

Spherical harmonics are functions f : S2 → C which are simultaneously
eigenfunctions of the Laplace-Beltrami and the angular momentum operators;
they are expressed explicitly as

Y m
l (θ, φ) =

√
(2l + 1)(l − m)!

4(l + m)!
Pm

l (cosθ)eimφ (4)

for degree and order m, l ∈ Z, |m| ≤ l , where Pm
l (x) is the associated Legendre

polynomial. Spherical harmonics form a countable orthonormal basis for square-
integrable functions on the sphere. A projection of a function f ∈ L2(S

2) onto

this basis yields the SPH coefficients f̂(l, m) =< f, Y m
l > , where < f, g > is

the usual L2 inner product.
A key property of spherical harmonics is their behavior under a shift on the

sphere. Given an element of the rotation group R ∈ SO(3), a rotated spherical
harmonic is expressed as

Y m
l (R−1ω) =

l∑

n=−l

Y n
l (ω)Dl

m,n(R) (5)

where Dl(R) are the irreducible representations of SO(3) (see [18] for a possi-
ble definition). This property has already been used in medical imaging appli-
cation [2]. The implication is that the effect of a rotational shift of spherical
harmonics on the sphere can be expressed completely by the spherical harmon-
ics of the same order. Thus, given two scalar functions f, h : S

2 → R, where
h(ω) = f(R−1ω), the L2-norms of their within-order components are equal:

∑

|m|<l

||f̂(l, m)||2 = ||Proj
Span{Y

−l

l
,Y

−l+1

l
,...,Y l

l
}f ||

2

2
= (6)
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||Proj
Span{Y

−l

l
,Y

−l+1

l
,...,Y l

l
}h||

2

2
=

∑

|m|<l

||ĥ(l, m)||2

Before we present our shape invariants, we should note that our spherical
parameterization preserves rotation in the following sense. Suppose M ′ = (K, g′)
is a mesh where g′ = R ◦ g, and f , f ′ : S2 → M, M ′ ∈ R3 are two inverse
conformal mappings. Then f ′(ω) = R ◦ f(R−1ω), ω ∈ S2. This property is
necessary for achieving invariance and not shared by some of the faster spherical
parameterizations, in particular those which affix an artificial north pole [19].

Fig. 1. Rotation and Undersampling: the bottom row shows the original 20K triangle
HP surface (left) and its sampled version (right). Note the undersampling. The top
row shows the effect of a random rotation. The same surface was rotated by α =
151.8 β = 75.6 γ = 259.5 reparameterized and resampled. Note the slightly different
parameterization of the undersampled region.

Finally, SPH-based shape invariants are defined as:

s(l) =
∑

i∈{x,y,z}

∑

|m|<l

||f̂i(l, m)||2 (7)

For clarification, we now give a sketch of a proof of s(l)s’ rotational invariance,
omitting some details given in [20]. With last paragraph’s notation in mind,

consider s′(l) =
∑

i∈{x,y,z}

∑
|m|<l ||f̂

′
i(l, m)||2, and rotation matrix elements

Ri,j , i, j ∈ {x, y, z}. Then,
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s′(l) =
∑

j∈{x,y,z}

∑

|m|<l

||〈
∑

i∈{x,y,z}

Rj,ifi(R
−1ω), Y m

l (ω)〉||2 = (8)

∑

j∈{x,y,z}

∑

|m|<l

||
∑

i∈{x,y,z}

Rj,i〈fi(R
−1ω), Y m

l (ω)〉||2

=
∑

j∈{x,y,z}

∑

|m|<l

||〈fj(R
−1ω), Y m

l (ω)〉||2.

Note the use of the rotation-preserving property of our conformal map above.
Now applying (6) to the last line above, we see that

s′(l) =
∑

j∈{x,y,z}

∑

|m|<l

||〈fj(ω), Y m
l (ω)〉||2 =

∑

j∈{x,y,z}

∑

|m|<l

||f̂j(l, m)||2 = s(l).

(9)
A recent review claimed that the Euclidean norm of each vector SPH coefficient
by itself is rotation-invariant, due to Parseval’s theorem. (5) shows that this is
certainly not the case. See [18] for an in-depth description of the relationship
between the rotation group and spherical harmonics.

By setting the zero-order coefficient to zero we achieve translational invari-
ance. Essentially, the l-th shape invariant is the L2 norm of the Euclidean dis-
tance from the surface to the average value (f̂x(0, 0), f̂y(0, 0), f̂z(0, 0)) of the
spherical map, projected onto the l-th order subspace.

For all its advantages, the conformal map has one significant shortcoming
– its large area distortion. We illustrate this in figure 1: regions of extreme
Gaussian curvature which protrude are mapped to very small regions on S2 and
suffer from undersampling. This can potentially cause our shape description to
lose its invariance in practice. Figures 1 and 2 illustrate the effect a random
rotation of a surface has on its invariants. In the first hundred orders, error is
within 2 %. More importantly, the greatest error of the invariants selected for
SVM classification (see section 6) is within 0.5%.

5 Support Vector Machine Classification

SVM [21] seeks an optimally separating hyperplane to distinguish two classes
within a feature space. Given {xi, ci}

n
i=1

data points and their classes ci, linear
SVM minimizes ||w||2+C

∑n

i=1
ξi constrained by ci(w �xi−b) ≥ 1−ξi, where ξi

are the slack variables, measuring the degree of a data point’s misclassification,
and w are the weights defining the hyperplane. A datum’s class is determined
by the sign of the SVM score w �xi−b. In this study, we used Joachims’ svmPerf
package, described in [22].

Shape invariants form our feature space. Since we have a left and a right
hippocampus, each hemisphere contributes B − 1 features for a total of 510.
Though far smaller than the initial sets of locally-based models, this is still too
large to train a good model given our number of subjects. Feature selection is
needed.
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Feature selection is a problem encountered in many SVM classification stud-
ies, and a wide array of literature on the subject exists [23]. While the most used
selection method in AD studies seems to be optimal thresholding of the SVM
weights w with cross-validation within the training set [3], also known as REF,

for now we have chosen a simple t-statistic thresholding X̄1−X̄2

SX̄1−X̄2

.

Fig. 2. Effect of undersampling on invariance. We show the relative error of invariants

corresponding to the surface in fig. 1: |s(l)−s
′(l)|

s(l)
vs. l, where l is the order of the

invariant.

6 Experimental Results

Our data set consisted of 112 1.5T T1-weighted MRI scan images from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) database, with 49 AD pa-
tients and 63 controls, age and gender-matched (mean age: 76.14, 76.76, p =
.609). We ascertained the discriminative power of our shape description with
the leave-one-out test. For each training set {xi, ci}

n−1

i=1
, we selected a feature

if its t-statistic exceeded a threshold tmin. After testing a few subjects, we no-
ticed that the best overall accuracy is achieved with 6.7 ≤ tmin ≤ 6.9, and set
it globally to 6.8. This yielded between 6 and 14 features, depending on which
subject was left out. All selected features s(l) were of order 37 ≤ l ≤ 58. Our
margin/error coefficient C was set to 1000. All features were normalized w.r.t.
standard deviation (differently for each left out subject) and translated so that
min(x) = −max(x). The transformation was saved and applied to the remain-
ing subject. The result was 75.5% sensitivity and 87.3% specificity for a total
correct rate of 82.1% (AD is considered positive).

By comparison, hippocampal volume gave 67.3/76.2 % sensitivity/specificity
in a leave-one-out test, with 72.3% correct overall. To combine our best features
into one measure, we ran SVM on the entire data set with the same tmin and
C and obtained each subject’s SVM score. In regression, SVM score correlated
slightly better with Mini-Mental State Examination (MMSE) and Clinical De-
mentia Rating Sum of Boxes (CDR) scores than volume: for MMSE, R2

vol =
.253, R2

SV M = .291; for CDR, R2

vol = .276, R2

SV M = .295, p < .001 for all.



84 Gutman et al.

Since all our selected discriminating features came from the right hippocam-
pus, consistent with a locally-based study on this data [13], we ran the same
tests using only right HP volume. We found it is a worse predictor than com-
bined volume in all cases.

As a measure of how much new information is contained in our shape de-
scription compared to volume, we ran a linear regression on combined volume
and SVM score. The two quantities are at best very weakly correlated, as shown
in figure 3.

Fig. 3. Scatter of SVM score and total hippocampal volume. Regression R2 = .16

7 Conclusion and Future Work

We have presented an alternative means of disease classification based on neu-
roanatomical shapes. Our method looks for a shape’s global patterns rather
than locally based variation in order to discriminate two groups of subjects.
In experiments, our method’s accuracy was on par with volume and surface
displacement-based models when compared to studies of comparable size. This
method may well be useful in complementing existing classification methods
in selecting biomarkers for the purpose of early detection, etc. Though several
existing studies have had better overall accuracy results, we believe that our
features contain information that is unavailable through sptatially-based ap-
proaches. Thus, we would like to see this feature set combined with some existing
ones for an improved classification accuracy.

In the future we would like to improve our method by experimenting with
other surface-intrinsic scalar maps such as mean curvature and conformal fac-
tor, area and angle-preserving parameterizations and refined feature selection.
Lastly, we intend to create a visualization of the discriminant features in our
next publication.
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