PROGRESSIVE WHITE MATTER
ABNORMALITIES IN AUTOSOMAL-DOMINANT
ALZHEIMER’S DISEASE: RESULTS OF THE DIAN
STUDY

Tammie Benzinger1, Tyler Blazey1, Robert Koeppel2, Clifford Jack3,
Marc Raichle3, Beau Ances3, Abraham Snyder3, Daniel Marcus3,
John Ringman4, Paul Thompson4, Bernardino Ghetti5, Andrew Saykins6,
Yi Su7, Reisa Sperling8, Stephen Salloway9, Keith Johnson10,
Steve Correia11, Peter Schofield12, Nick Fox13, Christopher Rowe14,
Krista Moulder15, Randall Bateman15, Chester Mathis16, Eric McDade17,
Michael Weiner18, Alison Goate18, Virginia Buckles19, Richard Mayeux19,
Colin Masters20, Victor Villemagne21, Morris Johni, 1Washington
University School of Medicine, St. Louis, Missouri, United States;
2University of Michigan, Ann Arbor, Michigan, United States;
3Mayo Clinic, Rochester, Minnesota, United States; 4Easton Center for Alzheimer’s
Disease Research, Los Angeles, California, United States; 5University of
California, Los Angeles, Los Angeles, California, United States; 6Indiana
University School of Medicine, Indianapolis, Indiana, United States;
7Washington University School of Medicine, St Louis, Missouri, United
States; 8Harvard University, Boston, Massachusetts, United States; 9Brown
University, Providence, Rhode Island, United States; 10MGH HMS, Boston,
Massachusetts, United States; 11Brown University, Providence, Rhode
Island, United States; 12Neuroscience Research Australia, Newcastle,
Australia; 13The National Hospital for Neurology and Neurosurgery,
London, United Kingdom; 14Neuroscience Research Australia, Melbourne,
Australia; 15Washington University, St. Louis, Missouri, United States;
16University of Pittsburgh, Pittsburgh, Pennsylvania, United States;
17University of Pittsburgh, Pittsburgh, Pennsylvania, United States;
18University of California, San Francisco, San Francisco, California,
United States; 19University of Columbia, New York, New York, United
States; 20University of Melbourne, Melbourne, Australia; 21Austin Health,
Melbourne, Australia.

Background: DIAN (Dominantly Inherited Alzheimer’s Network) is an
international longitudinal study of autosomal dominant Alzheimer’s disease,
including individuals affected with, or at risk for, AD. In late onset
AD it is often difficult to separate white matter disease associated with
aging and diseases of aging (hypertension, diabetes, etc) from that of
AD. In this young cohort, we quantified WM pathology using volumetric
MRI and diffusion tensor imaging (DTI) in order to evaluate WM disease
in ADAD. Methods: 71 participants from the DIAN study underwent
DTI. Participants were classified into four groups based upon mutation
(M+ and M-) and dementia status (CDR, Table 1). DTI was acquired
using a 64 direction sequence at 3T. Image analysis was conducted
with Tract Based Spatial Statistics (TBSS), a part of FSL. Group-level
differences were assessed with a general linear model controlling for
age, gender, and education and corrected for multiple comparisons using
Threshold-Free Cluster Enhancement. Volumetric T1 (MPRAGE)
studies were processed with FreeSurfer to generate white matter volumes.
Results: White matter volumes decrease with carrier status and progressive
dementia (Figure 1). Associated loss of fractional anisotropy (FA,
Figure 2) and elevated mean diffusivity (MD, not shown) are widespread.
Periventricular white matter is particularly involved at very mild (CDR
0.5) and mild (CDR 1.0) dementia (Figure 2). Conclusions: These findings
support the hypothesis that widespread white matter abnormalities are associated
with dementia in ADAD, and that these abnormalities precede the
development of dementia.
<table>
<thead>
<tr>
<th></th>
<th>Non-carriers</th>
<th>Carriers</th>
<th>Carriers (M+)</th>
<th>Carriers (M+)</th>
<th>Carriers (M+)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(M-)CDR 0</td>
<td>(M+)CDR 0</td>
<td>CDR 0</td>
<td>CDR 0.5</td>
<td>CDR > 1</td>
</tr>
<tr>
<td>n</td>
<td>43</td>
<td>44</td>
<td>18</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>39.90 (9.02)</td>
<td>34.84 (9.08)</td>
<td>41.77 (10.95)</td>
<td>47.67 (8.63)</td>
<td></td>
</tr>
<tr>
<td>Estimated time to dementia</td>
<td>-5.48 (12.33)</td>
<td>-12.02 (8.47)</td>
<td>-1.72 (8.75)</td>
<td>+2.27 (0.02)</td>
<td></td>
</tr>
<tr>
<td>Gender</td>
<td>M—33%</td>
<td>M—36%</td>
<td>M—56%</td>
<td>M—60%</td>
<td></td>
</tr>
<tr>
<td>Education</td>
<td>15.05 (2.49)</td>
<td>14.61 (2.62)</td>
<td>13.50 (2.31)</td>
<td>12.27 (1.98)</td>
<td></td>
</tr>
</tbody>
</table>

*Mean (standard deviation) in years