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ABSTRACT

Segmenting brain from non-brain tissue within magnetic resonance
(MR) images of the human head, also known as skull-stripping, is a
critical processing step in the analysis of neuroimaging data. Though
many algorithms have been developed to address this problem, chal-
lenges remain. In this paper, we apply the “deformable organism”
framework to the skull-stripping problem. Within this framework,
deformable models are equipped with higher-level control mecha-
nisms based on the principles of artificial life, including sensing, re-
active behavior, knowledge representation, and proactive planning.
Our new deformable organisms are governed by a high-level plan
aimed at the fully-automated segmentation of various parts of the
head in MR imagery, and they are able to cooperate in computing a
robust and accurate segmentation. We applied our segmentation ap-
proach to a test set of human MRI data using manual delineations of
the data as a reference “gold standard.” We compare these results
with results from three widely used methods using set-similarity
metrics.

Index Terms— deformable organisms, skull-stripping, MRI,
deformable models, segmentation

1. INTRODUCTION

Skull-stripping is the process of segmenting brain from non-brain
tissues (e.g., skull, scalp, eyes, or neck) in whole-head magnetic res-
onance (MR) images. Delineating the brain region is important for
applications such as surgical planning [1]; analysis of brain images,
where removing non-brain structures allows all subsequent analy-
sis to focus on the brain voxels specifically; or in brain registration
[2, 3]. Skull-stripping can also perform an important role in extract-
ing cortical surface models [4], in analyzing how the brain changes
over time in longitudinal studies [5], and in examining how the brain
is affected by disease [6].

Skull-stripping can be performed manually, and manually de-
lineated brain masks are typically used as the “gold standard”
to validate automatic brain extraction algorithms. Manual skull-
stripping takes a substantial amount of time to complete for a MRI
volume, and many groups have developed automated algorithms to
address this problem. Still, users often resort to manual clean-up of
automated skull-stripping results or will forgo the use of automated
algorithms entirely. Achieving better reliability in automated skull-
stripping algorithms remains an important research problem, as this
would be less labor-intensive while also reducing rater variation
across sets of images. Figure 1 shows a manual identification of the
brain (green) in a T1 MR image of the head (red).

Many automated approaches have been described in the litera-
ture and made available publicly. The Brain Surface Extractor (BSE)
applies Marr-Hildreth edge detection to the image to obtain a con-
nected component that represents the brain; it then applies morpho-

Fig. 1. T1 MR image (red) with the brain location manually identi-
fied in green.

logical operations to remove erroneous connected regions and to pro-
duce a smooth brain mask [7]. In some cases, the erosion may fail
to completely separate the brain from the surrounding tissues, which
can lead to attached skull, scalp, or dura. The Brain Extraction Tool
(BET) [8] uses a deformable model that evolves into the shape of
the brain by relying on local information in the image. This method
is more robust for images where certain areas do not have a clear
boundary between the brain and non-brain tissue, but it does not in-
corporate anatomical tissue regions and their relative positions. The
Hybrid Watershed Algorithm (HWA) [9], applies the watershed al-
gorithm to the MR image to obtain a rough estimate of the brain
region, then fits a deformable surface to the region, and allows it to
deform based on geometric constraints and a statistical atlas. Com-
parisons of these and other skull-stripping algorithms have appeared
in [10].

In this paper, we introduce the application of “deformable organ-
isms” [11] to the problem of skull-stripping1. Within the deformable
organisms framework, deformable models are equipped with higher-
level control mechanisms based on the principles of artificial life.
These mechanisms include sensing, reactive behavior, knowledge
representation, and proactive planning. Our new deformable organ-
isms are governed by a high-level plan aimed at fully-automated
segmentation of various parts of the head in MR images, and they
cooperate in computing the segmentation. The organisms make use
of local information, such as edges, along with global image tissue
classifications from K-means clustering. Their intermediate goals of
finding easily recognized features in the image make the final seg-
mentation more robust.

1[12] proposed a framework similar to deformable organisms for seg-
menting IntraVascular UltraSound (IVUS) images. Their work, however,
focused on establishing a set of rules that multiple agents can use to com-
municate in order to solve particular medical image segmentation tasks.

1662978-1-4244-4128-0/11/$25.00 ©2011 IEEE ISBI 2011



2. METHODS

2.1. Image Processing

The subject T1 MR of the head is first processed so that its results
are available to the deformable organisms as they segment the brain.
The organisms are embedded in the image space and “sense” the
processed images by analyzing the intensities around them.

The images are processed in various ways to make different
types of information available to the sensors of the organisms. The
basic T1 weighted MR image consists of a volume grayscale inten-
sity image and is used as a base for three different types of process-
ing.

• The gradient of the base MR image is computed to create an
image that emphasizes the edges.

• A threshold is applied to the base image by finding a his-
togram of the intensities and processing it to classify voxels
lying within the head from those of the surrounding air in the
image.

• Once a threshold has been applied to the image, a K-Means
classification is used to classify the head voxels into K differ-
ent classes. In our case we set K to 2 and 3 (Figure 2). The
brain region is actually composed of two tissue types, but the
rest of the head adds interference into the classification.

Fig. 2. 3-Means classification of a T1 MR image. The intensities are
mapped to three different labels, segmenting it into three areas.

2.2. Deformable Organisms

Our deformable organisms combine representations and control
mechanisms of various different types, as outlined below. Each
layer is customized to whatever needs to be segmented, in our case
we focus on the brain.

2.2.1. Geometry and Physics

Each deformable organism is represented geometrically as a 3D tri-
angulated mesh. The models are initialized in the shapes of spheres
that either contract or expand to find the boundary of the object be-
ing modeled. Each geometric model is deformed iteratively to model
different structures in the MR images. Each vertex on the mesh is
moved either inwards or outwards along the direction of the normal
vector at that point. At each iteration, Laplacian smoothing is ap-
plied to the mesh to constrain the movement of each vertex in order
to maintain a smooth mesh that does not pass through itself.

2.2.2. Perception

The perception layer enables the organism to sense the medical im-
age in which it is embedded. The vertices of the triangulated mesh
are represented in real coordinates embedded in a volume image rep-
resented by a set of voxels. Hence, nearest neighbor interpolation
was used to sample the image intensities at the location of a certain
point in the mesh. The locations of all the organisms in the image
are computed by the perception layer. A 3D rasterization method
followed by dilation is used to calculate which voxels in the volume
are located within each organism. The dilation is required to deal
with the discrepancy between the low resolution of the volume im-
age in which meshes are embedded. When the mesh is rasterized
it will conservatively choose a voxel that is only partly intersected
by the mesh and thus remove too many voxels from the boundary.
The dilation helps to fit the border voxels better to the boundary of
the mesh and resolve this discrepancy. This information is used by
the motor control layer to regulate where an organism is allowed to
deform by restricting organisms from intersecting each other.

2.2.3. Motor Control

The motor control of the organism is a function of intensities along
the line normal to the mesh surface going through each vertex. The
intensities along this line are from the images available to the per-
ception layer. This layer looks for or avoids a particular intensity or
relative intensity or tries to fit a certain model or statistic to the data
along these lines. The intensities along the normal lines are sampled
from different types of sensors and can each be processed using a
different set of constraints.

2.2.4. Behavior

The organism has a repertoire of behaviors. Translation is a behavior
that moves a particular organism rigidly without any deformation to
the mesh, as does the rotation behavior. These behaviors can take
into account the organism’s relationship to other organisms and use
information about their locations to decide how to move rigidly. An-
other behavior is the local deformation of the mesh. This behavior
also depends on sensing different information, various motor con-
trols, and the locations of surrounding organisms. Thus high level
information about locating different regions in the image can be used
to create a plan for segmentation.

2.2.5. Cognition

The cognitive layer is created by putting together a set of behaviors
to accomplish certain goals. Different behaviors can be activated
dynamically depending on what goals have been accomplished or
what features have or need to be located.

2.3. Skull-Stripping Plan

Figure 3 shows the image processing steps and the organism plan.
The red arrow points to the processing of the T1 MR image. The
black arrows show the image and location dependencies at each step.
The images are sensed at various stages in the organism plans. When
a structure is found, its location can be helpful when locating other
structures. For instance, the deformation of the brain utilizes the
location of the skin and the eyes to figure out the bounds of where it
can expand.

The Skull-Stripping plan dictates which organisms are used, the
goals for each organism and how the organisms interact. It begins by
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Fig. 3. The flow of data and steps of the algorithm. The red arrow
shows processing steps for the image and the black arrows represent
information that is being passed.

finding the location of a skin organism that surrounds the head. Then
using the skin organism’s location and shape, two eye organisms are
spawned. Finally, a brain organism is created that interacts with the
three other organisms to refine its own location.

Figure 4 shows an example of the organism deformations and
interactions during the skull-stripping process. The skin organism
is initialized as a large spherical triangulated mesh that is deformed
into the surface of the head using the threshold of the initial MR
image (Fig. 4A and 4B). The skin organism is then processed to
locate the nose. This information is used to locate the eyes (Fig.
4C and 4D). Figure 4D shows the two eye organisms expanded to
the full size of the eye by sensing the 3-Means classification of the
MR image. Once this is complete, the skin organism again deforms
to locate the area surrounding the brain by deforming through the
eyes by sensing their locations and by using edge information from
the 2-Means classified image as shown in Fig. 4E. In Fig. 4F, the
eyes are again deformed by sensing the 2-Means image to take into
account the surrounding tissues and to restrict more areas that the
brain organism may try to expand into. Then using the location of
the eyes and skin meshes a brain organism is spawned (Fig. 4G)
that deforms itself to match the classification of tissues in the 3-
Means image and to stay within the skin mesh and complete the
segmentation of the brain (Fig. 4H).

Figure 5 shows how the brain organism interacts with the skin
(yellow) and eye (red) organisms. Figure 5A shows how the brain
organism (cyan) is expanding by sensing the image forces from the
3-Means classification of the image. The blue arrows show the direc-
tion in which the brain organism is deforming. Figure 5B shows that
the organism is restricted by the skin and eye organisms as it pushes
outwards. It is able to sense the locations of the other organisms and
is forced to stay within the boundary as shown by the red arrows.

2.4. Implementation

Operations and processing of the MR images was implemented us-
ing the Insight Toolkit (ITK)2, an open-source C++ library for med-
ical image analysis. The mesh operations and the visualization of
the deformable organisms was completed using the Visual Toolkit

2http://www.itk.org/

Fig. 4. This figure shows the sequential steps that the skin (yellow),
eye (red), and brain (cyan) organisms use to skull-strip the head im-
age.

Fig. 5. Interactions between the brain (cyan), eye (red), and skin
(yellow) organisms. The arrows (blue) in Subfigure A show how
the brain organism is expanding and Subfigure B has arrows (red)
showing how its movement is restricted by the other organisms.

(VTK)3, an open-source C++ library for 3D graphics, visualization,
and image processing.

The entire deformable organisms method for skull-stripping
takes less than three minutes on an Intel 2GHz machine with 1.50
GB of RAM to segment an MR image.

2.5. Evaluation

We evaluated the performance of our algorithm using the Segmenta-
tion Validation Engine (SVE; http://sve.loni.ucla.edu), a web-based
resource that we developed previously [13]. SVE provides a set of
40 human whole-head T1-weighted MR images of 256× 124× 256
voxels (voxel size 0.86 × 1.50 × 0.86 mm3) that were delineated
manually as part of the LONI Probabilistic Brain Atlas (LPBA40)
[14]. The 40 images were downloaded and processed with our al-
gorithm. The brain masks were then uploaded to the SVE server,
which computed a series of measures comparing our brain masks
with the manually-delineated masks. The overlap metrics used were

3http://www.vtk.org/

1664



the Jaccard Similarity, the Dice Coefficient, Sensitivity, and Speci-
ficity; these are described in [13]. Validation results are archived,
allowing comparison with previously evaluated methods.

3. RESULTS

We applied the algorithm to a set of data, compared it to three exist-
ing algorithms, and validated the results.

3.1. Other Algorithms

The deformable organism framework for skull-stripping was com-
pared with FSL’s Brain Extraction Tool (BET) [8] (version: BETv2.1
settings: -B), the Brain Surface Extractor (BSE) [7] (version:
BSEv08b settings: -n 5 -d 15 -s 0.65 -p –noneck), and the Hy-
brid Watershed (HWA) [9] (version: HWA3 settings: -less).

Table 1 shows the mean for each of the metrics across the 40 im-
ages used to test the algorithms [mean±S.D.]. The results from the
SVE false positive and false negative projection maps showed that
the method includes too many voxels around the cerebellum lobe and
the inferior and anterior portions of the temporal lobe. These can be
improved through refining the parameters in the behavior layer. The
method does do a good job at delineating the area around the medial
longitudinal fissure (the groove separating the two hemispheres of
the brain) and the anterior part of the parietal lobe when compared
to the other algorithms.

Method Jaccard Dice Sensitivity Specificity

DO 0.8954±0.0288 0.9446±0.0163 0.9616±0.0129 0.9864±0.0082
BSE 0.9431±0.0282 0.9705±0.0158 0.9747±0.0334 0.9941±0.0019
BET 0.9310±0.0089 0.9642±0.0048 0.9875±0.0117 0.9892±0.0014
HWA 0.8537±0.0184 0.9210±0.0107 0.9992±0.0003 0.9695±0.0053

Table 1. Results from the application on the LPBA40 dataset of
deformable organisms (DO), the brain extraction tool (BET), and
the brain surface extractor (BSE). [mean±S.D.]

4. DISCUSSION

The use of deformable organisms to segment the brain in whole
head human MR images can help in cases where other algorithms
include areas of tissue around the eyes and cases where they include
parts of the skin. This method could help in difficult cases where
those boundaries are hard to delineate. The behaviors within the de-
formable organisms framework can be customized to perform differ-
ent specific brain segmentation tasks. If a brain study was sensitive
to a particular lobe in the brain then the organisms could be cus-
tomized so that area had better accuracy during the skull-stripping
process.

It also allows the segmentation process to be sensitive to many
different types of image information. In our case we process the
images using K-Means classification, a threshold, and the gradient.
Each organism has its own set of goals and new organisms can build
off of what has already been accomplished in the segmentation task.
The deformable organisms framework also easily allows the addi-
tion of components using different types of images and the use of
additional deformations to improve segmentation performance.

The evaluation of the algorithm showed the areas of the brain
where the deformable organisms approach needs more tuning and
where it provides good results. The ability for each organism to be
customized could allow for development of a skull-stripping plan
customized for each area of the brain.
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