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ABSTRACT

High angular resolution diffusion imaging (HARDI) allows in vivo
analysis of the white matter structure and connectivity. Based on ori-
entation distribution functions (ODFs) that represent the directional-
ity of water diffusion at each point in the brain, tractography meth-
ods can recover major axonal pathways. This enables tract-based
analysis of fiber integrity and connectivity. For multi-subject com-
parisons, fibers may be clustered into bundles that are consistently
found across subjects. To do this, we scanned 20 young adults with
HARDI at 4 T. From the reconstructed ODFs, we performed whole-
brain tractography with a novel Hough transform method. We then
used measures of agreement between the extracted 3D curves and
a co-registered probabilistic DTI atlas to select key pathways. Us-
ing median filtering and a shortest path graph search, we derived
the maximum density path to compactly represent each tract in the
population. With this tract-based method, we performed tract-based
analysis of fractional anisotropy, and assessed how the chosen trac-
tography algorithm influenced the results. The resulting method may
expedite population-based statistical analysis of HARDI and DTI.

Index Terms— tractography, clustering, Dijkstra’s shortest
path, multi-subject analysis, fiber bundles

1. INTRODUCTION

Fiber integrity and connectivity in the living brain may be measured
using high angular resolution diffusion imaging (HARDI), which re-
constructs the local profile of water diffusion at each point in the
brain. Following the dominant directions of local water diffusion
throughout the white matter, is one way tractography methods can
recover the geometry and connectivity of the major white matter
fiber pathways.

In clinical research, tractography may be used to reconstruct
white matter tracts for surgical planning [1]. Analysis of structural
connectivity is also useful for understanding coherent activity in
functional networks. There are several ongoing efforts to map the
human connectome, and to detect altered patterns of connectivity in
disease. Additionally, fiber tracts may be extracted to study hemi-
spheric asymmetries and functional lateralization [2], and to identify
genetic effects and sex differences in neural network organization
[3]. However, before group differences in specific tracts can be
studied, the large collection of 3D curves generated by tractography
needs to organized into bundles that correspond to well-known white
matter tracts [4]. Corresponding tracts and bundles also need to be
matched across subjects, as a basis for statistical comparisons.

A wealth of methods have been developed to cluster fibers ex-
tracted using diffusion-based tractography [5, 6]. Some methods
embed the problem in R

n [7]; they compute geometrical invariants

for each curve; these are then stacked into high-dimensional vectors
that are clustered. The resulting clusters of points may correspond
to known white matter commissures such as the corpus callosum,
or major fasciculi. Some methods are inspired by standard unsuper-
vised pattern recognition methods. They divide a set of n observa-
tions into g groups, to maximize some metric of similarity among
members of a group versus between members of different groups.
Algorithms based on K-means, fuzzy clustering, hierarchical or ag-
glomerative methods, and self-organizing maps can all be adapted,
in principle, to cluster tracts. One such approach, spectral cluster-
ing [8, 7] groups fibers based on pair-wise distance measures among
fibers as well as their spatial locations. Probabilistic clustering has
also been used, without anatomical constraints, based on polyno-
mial regression mixture models [9]. One problem with clustering
methods that do not use prior anatomical information is that in many
cases, known fiber bundles may be split into two or combined by
the algorithm. A consistent partition across subjects is often diffi-
cult to find, and results may not correspond to known tracts in neu-
roanatomical atlases. Overall, the goal of this work is to (1) generate
representative curves for tract based analysis of HARDI; (2) derive
them guided by regions of interest in a brain atlas, so that the result-
ing tracts better reflect known anatomy, and (3) to make the tracts
analyzed robust to discrepancies between the atlas and each indi-
vidual subject, which tend to make atlas-based methods harder to
apply to new subjects. To assess the utility of the method, we show
an illustrative application assessing hemispheric asymmetry in tract-
based FA, and we assess how the results depend on the tractography
method that provides a basis for the analyses.

To create consistent fiber maps across subjects, we extracted
fibers with a whole-brain tractography method, based on the Hough
transform, and developed an atlas-based method to cluster them.
First we retain all curves that are consistent, according to a similarity
metric, with those in a probabilistic atlas. We then remove spurious
curves by applying a median filter to a binary map representing the
preliminary fiber clusters. We create a graph from a density image
of the clustered fibers in each subject. With the Dijkstra shortest
path algorithm [10], we compute a representative path through this
graph. This path follows areas with the highest fiber density. These
maximum-density shortest paths offer a compact way to compare
fiber bundles across a population, and compute multi-subject statis-
tics. We assessed how the results depend on the choice of tractogra-
phy algorithm, using one algorithm that used the full HARDI ODF,
and a more standard streamline method, that follows the principal
eigenvector of the diffusion tensor. We concluded that both meth-
ods gave satisfactory results for tract-based statistical analyses, with
some characteristic differences in the paths extracted; we comment
on these in the Discussion.
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2. METHODS

2.1. Image data

We analyzed 105-gradient high-angular resolution diffusion images
(HARDI) acquired from 20 healthy young adults [11], on a 4 T
Bruker Medspec MRI scanner. 3D volumes consisted of 55 2-mm
thick axial slices with a 1.79 × 1.79 mm2 in-plane resolution. 94
diffusion-weighted images (b = 1159 s/mm2) were acquired with a
uniform distribution of gradient directions on the hemisphere. 11
b0 (non-diffusion encoding) images were also acquired. Images
were corrected for motion and eddy current distortions using FSL
(www.fmrib.ox.ac.uk/fsl/).

2.2. Tractography methods

We analyzed two different tractography methods to explore the ro-
bustness of our clustering technique: (1) a novel Hough transform
method to compute optimal paths through a field of constant solid
angle orientation distribution functions (CSA-ODFs) derived from
the HARDI data [12], and (2) a streamline-based method based on
the diffusion tensor [13]. We used TrackVis [14] to visualize fibers
and clusters from both tractography methods.

The Hough transform method [12] tests 3D fibers that pass
through seed points throughout the image space. It assigns a score
to each fiber, based on the log-probability of the existence of the
fiber, according to a cost function. The cost function measures the
generalized fractional anisotropy (GFA) [15] along the fiber path, as
well as the probability of a tract propagating in any given direction,
derived from the ODF. The algorithm applies a Hough transform
based voting process to a vast set of 3D curves in the volume. It
assigns a score to each of them, and chooses those with the highest
scores as potential tracts. The Hough transform is used to assign
the highest scoring curve through a seed point as the potential fiber
tract by having the voxels vote for the possible curves. For a single
subject, each curve’s score is defined as:

Z
(log[ODF (�x(s),�t(s))GFA(�x(s))] + λ)ds (1)

where �x(s) and�t(s) are respectively the location and the unit tangent
vector to the curve under consideration, at the arc length s, and λ is
a positive constant used as a prior on fiber length.

We also used the Diffusion Toolkit [14] to calculate standard
streamline based fibers from the diffusion tensor model. Tracking
follows the local principal diffusion direction, from a seed point in
the image, to form a fiber. The stopping criterion is based on a strong
change in fiber direction,

R =
sX
i

sX
j

|vi · vj |/s(s − 1), (2)

where s is the number of data points referenced on the fiber, vi is
the direction of maximal diffusion at point i. TrackVis was used to
visualize fibers and filter them based on regions of interest (ROI).

2.3. Probabilistic atlas clustering

Each subjects T1-weighted image was aligned by 9-parameter trans-
formation to the Colin27 high-resolution brain template [16] after
manual skull stripping. The 11 b0 images from the DWI were av-
eraged and aligned to the corresponding registered T1-weighted im-
age, after they were masked using BET [17]. In this space, FA maps

were generated for each subject. We also created a geometrically-
centered study-specific mean FA template (or minimal deformation
template; MDT) [18].

To cluster fibers from the tractography algorithm we used the
JHU white matter tractography atlas [19], which contains 17 promi-
nent white matter tracts based on a set of fibers traced in 4 healthy
subjects. The FA image from the JHU atlas was affinely transformed
to the same MDT using FMRIB’s Linear Image Registration Tool
(FLIRT) [20]. The transformation was also applied to each of the
3D probabilistic tract images.

Figure 1 shows the streamline tractography results with Track-
Vis. The fibers shown are those that intersect any of six selected re-
gions from the fiber tract atlas: the forceps major (shown in green);
forceps minor (orange); left superior longitudinal fasciculus (pur-
ple); right superior longitudinal fasciculus (red); left inferior fronto-
occipital fasciculus (burgundy); and right inferior fronto-occipital
fasciculus (blue). Fibers were retained if they passed through any
of the six regions. The fibers are colored by the direction of their
middle segment.

Fig. 1. Selected subsets of curves (extracted using TrackVis), based
on their intersection with six different white matter regions from the
JHU atlas. Atlas regions are shown in solid colors. These regions
were used as a basis (ROIs) for curve selection and further analysis.

This figure gives insight into how we can use the atlas to se-
lect consistent sets of fibers in the brain. TrackVis allows set-based
operations (logical AND/OR/NOT) with ROIs to select fibers, but
generally requires manual effort to interact with the fiber sets on an
individual fiber level.

To allow atlas-based fiber labeling independent of TrackVis, we
fitted a 3D cubic spline curve to each fiber, and regularly sampled it.
We found the set of voxels that it intersects with in the encompassing
image space, then we computed their overlap with the white matter
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tract of interest in the atlas. The number of voxels in the intersection
measures how well a tract fits into an atlas region. We then selected
all tracts that intersected the atlas. This automatically selects fibers
from a population of images, or from each individual subject. Figure
2(a) shows the part of the fiber tract atlas that represents the forceps
major region of the corpus callosum, which includes the splenium.
In this region, fibers arch backwards into the occipital lobes at the
back of the brain. Figure 2(b) shows all the tracts that intersect it.
The tracts shown here were computed using the Hough method. The
fibers are colored by the number of voxels they intersect that are
within the atlas region.

(a)

(b) (c)

Fig. 2. (a) Forceps major region of the corpus callosum from the
JHU atlas. (b) Fibers from the Hough transform method that in-
tersect the corpus callosum in the JHU atlas. (c) Fibers that remain
after a threshold is applied to the number of points that must intersect
the atlas. Fibers are colored by the number of voxels they intersect
within the atlas.

As shown in Figure 2(b), choosing all possible fibers that inter-
sect a given white matter atlas region does not necessarily yield a
good representation of that particular fiber bundle. Spurious curves
may be included. Because of this, a threshold based on the voxel
intersection count was used to further constrain which fibers were
assigned to that fiber bundle (Figure 2(c)). TrackVis enables the se-
lection of fibers that intersect an ROI. In the case of the JHU atlas,
TrackVis allows the user to reduce the size of the ROI. This helps
constrain the number of fibers selected. We employed a threshold
that differed from TrackVis in that it enabled us to select fibers based
on how much fiber passed through the atlas. We chose the threshold
to be the thickness of the ROI, although varying this did not affect
the results drastically.

2.4. Median filtering of tract density

Once a set of tracts has been found in one subject using the JHU
atlas, we create a binary volume image where a voxel is 1-valued
if a fiber intersects it and 0 otherwise. We computed all the voxels
that the selected fibers pass through, to create one binary volume
image. We then apply median filtering [21] to this volume image.
Median filtering replaces each voxels value by the median of the
voxel values in its neighborhood (which for our binary data, is like a
voting process). In our experiments, we used a 5 × 5 × 5 box as the
neighborhood centered on each voxel. The median filter changes any
1-valued voxels far from the main cluster to 0, to suppress noise and
erroneous fibers. We use the median-filtered binary image to further
screen the fibers in the cluster by calculating the intersection of the
binary image voxels with fibers in the cluster. We remove a fiber if
all the voxels it travels through are not included in the filtered binary
image. This removes fibers far from the main cluster, and creates a
dense set of tracts with a coherent shape.

The resulting set of fibers after this median filtering step is the fi-
nal set included in the fiber bundle and serve as the basis for the white
matter tract. Representative results of median filtering are shown in
Figure 3(a).

(a) (b)

Fig. 3. (a) Fibers included in the bundle after median filtering of the
binary image. (b) Fiber path through the bundle, following the areas
of highest density.

2.5. Representing the cluster by the maximum density path

To compactly represent the fiber bundle in each subject, we create a
path through the bundle to follow the highest density of fibers. We
first create a fiber density volume image by counting, at each voxel,
how many fibers pass through it. We then create a graph (a set of
nodes and undirected edges connecting them) from this density im-
age. Nodes in the graph represent the voxel locations that have a
non-zero density value, and the edges connect each voxel to its sur-
rounding 26 neighboring voxels. The value of the edge connecting
nodes i and j is dictated by:

1

di + dj
(3)

where di is the density at the voxel corresponding to node i. This
makes the cost of traveling from node i to node j inversely propor-
tional to their density.

We then select a start and end node in the graph by first assigning
a start and end voxel location in the JHU atlas. The closest non-zero
voxel locations in the density image (by Euclidean distance) to the
start and end voxels in the atlas are used as the voxels that correspond
to the start and end nodes in the graph. Dijkstra’s algorithm [10] is
then run on the graph to find the shortest path connecting the start
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and end nodes. Dijkstras algorithm is a graph search algorithm that
efficiently finds the shortest path from a start node to every other
node in the graph. In this case, the shortest path will include edges
connecting nodes with high density values. As a result, it follows the
path with the highest density of fibers in the image.

This resulting path is an ordered set of voxels. The centers of
the voxels in the path are then used as the coordinates that trace the
path and a 3D cubic spline is fitted to them. The resulting path is
used to compactly represent the fiber bundle. The maximum density
path of the fiber bundle in 3(a) is shown in 3(b). By computing the
shortest path in each subject, we can represent the fiber bundles in
all subjects in the entire dataset. The FA along this fiber path may
then be used to compare fiber bundles across subjects or groups [22].

2.6. Paired t-test of FA

Next we illustrate how to use the method to obtain tract-based statis-
tics [23]. Once the maximum density curves are computed, we per-
formed a paired-sample t-test comparing the FA along the maximum
density curves from the Hough transform method to those from the
streamline method. This was done pointwise, by uniformly sampling
100 points across each curve and finding the FA value at each point
from the corresponding FA image, via cubic interpolation. We then
found the mean FA along each curve and used that as an attribute for
statistical analysis along that curve.

Another paired-sample t-test was used to assess the degree of
hemispheric (left/right) symmetry of the tracts using each method.
We split the curves in two by separating them at the midsagittal
plane. Then we found the mean FA along each of these curves and
compared them. This test was applied to the group of maximum
density curves for each tractography method.

3. RESULTS

To test the proposed approach, we ran the methods on 20 subjects
images. Fibers were found using the Hough transform (green) and
streamline (blue) methods. Figure 4 shows 40 different maximum
density paths, one for each of the two tractography methods, per sub-
ject. Paths are then readily compared across subjects and methods.

The streamline method generates many more fibers than the
Hough transform method. This is partly because the cost function
does not rate fibers based on their overall geometry, as the Hough
method does. Its density image also covers a larger volume, and all
maximum density paths originate at the user-specified start and end
points. Fibers were manually selected using TrackVis by using the
NOT logical function to remove fibers outside the JHU atlas region.

The paired-sample t-test comparing the FA along the maximum
density curves from the Hough transform method compared to those
from the streamline method gave a p-value of 8.8 × 10−8. The
paired-sample t-test assessing the hemispheric asymmetry of the
maximum density curves from the Hough transform method gave a
p-value of 0.56. The test for the symmetry of the curves from the
streamline method gave a p-value of 9.4×10−3. The difference may
be because there are significantly more curves from the streamline
method so that the maximum density curve has a somewhat different
trajectory. The fibers generated from each method may also differ in
shape. In future, it may be fairer to compare results using the same
number of fibers for both methods, although there would have to be
a principled decision about which fibers to keep. Also, the Hough
method is somewhat more computationally intensive (given its more

Fig. 4. Maximum density curves from the Hough transform method
(green) and the streamline method (blue). There are 40 curves in
total: each method was run with the same 20 HARDI datasets.

complex mathematical formulation), making it easier to sample a
very high number of curves with the streamline method.

We then found the FA along each of these curves; results are
plotted in Figure 5. Shown in green are the curves from the fibers
generated using ODF/Hough tractography. In blue, we show the
curves generated from the streamline single-tensor method. In gen-
eral, the FA along the curves from the Hough method was greater,
though both approaches had the same general pattern (higher at mid-
line).

4. DISCUSSION

In this work, we combined whole-brain HARDI tractography with
a standard white matter tract atlas. We were able to automatically
group traced fibers in the brain irrespectively of the chosen tractogra-
phy method. By reconstructing maximum density paths for each in-
dividual, we can compactly represent known anatomical fiber tracts
in new datasets. This allows us to obtain group statistics for cross-
subject comparisons of scalar attributes along these paths (e.g., such
as FA, GFA, or mean diffusivity). This method lends itself to popula-
tion studies as it recovers homologous anatomical tracts across sub-
jects without requiring manual labeling of tracts. It also avoids com-
putationally intensive high-dimensional clustering methods to match
corresponding clusters across subjects, which is anyhow not always
successful. The threshold and median filter are additional processing
steps that do not require manual modification, once established for a
specific dataset.

Maximum density paths may be used to compute population
statistics for clinical or genetic analyses of connectivity. Features
such as curvature along the paths may also be examined. The paths
may be registered together across large numbers of subjects to inves-
tigate statistical factors associated with differences in tract geometry
and fiber characteristics across populations.

The low p-value for the test comparing mean FA along the paths
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Fig. 5. FA along the maximum density curves generated using fibers
generated from the Hough transform and streamline method, for
each of the 20 HARDI datasets. Interestingly, the Hough method
picks curves with a higher FA, and there is some evidence that dif-
ferences in FA are easier to detect when FA is higher, perhaps due
to the higher SNR. For this reason, the Hough-based tracts may be
more useful for studying factors that influence tract FA. The FA is
slightly reduced away from the midline of the brain, partly due to
a less degree of directional coherence among fibers within a voxel.
This occurs because the fibers are all essential orthogonal to the mid-
sagittal plane at midline, but mix with other tracts and fan out more
as they deviate further from midline.

between the two approaches could show that although the overall
shape of the maximum density curves is similar, as shown in Figure
5, the distribution of FA along the curves is significantly different.
This could demonstrate that each method clusters effectively with
sufficient internal coherence to capture the differences in the two
tractography methods. In addition, the Hough method tended to pick
tracts with consistently higher FA. This may be useful in statistical
studies, where high FA regions typically offer greater SNR, making
it easier to detect effects of specific clinical or genetic factors on fiber
microstructure.

5. REFERENCES

[1] C. Nimsky, O. Ganslandt, P. Hastreiter, R. Wang, T. Benner, A.G.
Sorensen, and R. Fahlbusch, “Preoperative and intraoperative diffusion
tensor imaging-based fiber tracking in glioma surgery,” Neurosurgery,
vol. 56, no. 1, pp. 130–138, 2005.

[2] H.W. Powell, G.J.M. Parker, D.C. Alexander, M.R. Symms, P.A.
Boulby, C.A.M. Wheeler-Kingshott, G.J. Barker, U. Noppeney, M.J.
Koepp, and J.S. Duncan, “Hemispheric asymmetries in language-
related pathways: a combined functional MRI and tractography study,”
NeuroImage, vol. 32, no. 1, pp. 388–399, 2006.

[3] N. Jahanshad, I. Aganj, C. Lenglet, A. Joshi, Y. Jin, M. Barysheva, K.L.
McMahon, G.I. De Zubicaray, N.G. Martin, M.J. Wright, A.W. Toga,
G. Sapiro, and P.M. Thompson, “Sex differences in the human con-
nectome: 4-Tesla high angular resolution diffusion imaging (HARDI)
tractography in 234 young adult twins,” in International Symposium on
Biomedical Imaging, ISBI 2011. IEEE, in press, 2011.

[4] F.A. Mettler, “Connections of the Cerebral Cortex,” Archives of Neu-
rology, vol. 10, no. 6, pp. 637, 1964.

[5] E. Visser, E.H.J. Nijhuis, J.K. Buitelaar, and M.P. Zwiers, “Partition-
based mass clustering of tractography streamlines,” NeuroImage, vol.
54, no. 1, pp. 303–312, 2011.

[6] X. Wang, W.E.L. Grimson, and C.F. Westin, “Tractography segmenta-
tion using a hierarchical Dirichlet processes mixture model,” NeuroIm-
age, vol. 54, no. 1, pp. 290–302, 2011.

[7] L.J. O’Donnell and C.F. Westin, “Automatic tractography segmentation
using a high-dimensional white matter atlas,” Medical Imaging, IEEE
Transactions on, vol. 26, no. 11, pp. 1562–1575, 2007.

[8] L.J. O’Donnell, M. Kubicki, M.E. Shenton, M.H. Dreusicke, W.E.L.
Grimson, and C.F. Westin, “A method for clustering white matter fiber
tracts,” American Journal of Neuroradiology, vol. 27, no. 5, pp. 1032–
1036, 2006.

[9] S.J. Gaffney and P. Smyth, “Joint probabilistic curve clustering and
alignment,” Advances in neural information processing systems, vol.
17, pp. 473–480, 2005.

[10] E.W. Dijkstra, “A note on two problems in connexion with graphs,”
Numerische mathematik, vol. 1, no. 1, pp. 269–271, 1959.

[11] G.I. De Zubicaray, M.C. Chiang, K.L. McMahon, D.W. Shattuck, A.W.
Toga, N.G. Martin, M.J. Wright, and P.M. Thompson, “Meeting the
challenges of neuroimaging genetics,” Brain Imaging and Behavior,
vol. 2, no. 4, pp. 258–263, 2008.

[12] I. Aganj, C. Lenglet, N. Jahanshad, E. Yacoub, N. Harel, P. M. Thomp-
son, and G. Sapiro, “A Hough transform global probabilistic approach
to multiple-subject diffusion MRI tractography,” Medical Image Anal-
ysis, in press, 2011.

[13] S. Mori, B.J. Crain, V.P. Chacko, and P.C.M. Van Zijl, “Three-
dimensional tracking of axonal projections in the brain by magnetic
resonance imaging,” Annals of Neurology, vol. 45, no. 2, pp. 265–269,
1999.

[14] R. Wang, T. Benner, AG Sorensen, and VJ Wedeen, “Diffusion Toolkit:
A Software Package for Diffusion Imaging Data Processing and Trac-
tography,” in Proc. Intl. Soc. Mag. Reson. Med, 2007, vol. 15, p. 3720.

[15] D.S. Tuch, “Q-ball imaging,” Magnetic Resonance in Medicine, vol.
52, no. 6, pp. 1358–1372, 2004.

[16] C.J. Holmes, R. Hoge, L. Collins, R. Woods, A.W. Toga, and A.C.
Evans, “Enhancement of MR images using registration for signal aver-
aging,” Journal of Computer Assisted Tomography, vol. 22, no. 2, pp.
324–333, 1998.

[17] S.M. Smith, “Fast robust automated brain extraction,” Human Brain
Mapping, vol. 17, no. 3, pp. 143–155, 2002.

[18] N. Jahanshad, A.D. Lee, M. Barysheva, K.L. McMahon, G.I. de Zu-
bicaray, N.G. Martin, M.J. Wright, A.W. Toga, and P.M. Thompson,
“Genetic influences on brain asymmetry: A DTI study of 374 twins
and siblings,” NeuroImage, 2010.

[19] S. Wakana, H. Jiang, L.M. Nagae-Poetscher, P. van Zijl, and S. Mori,
“Fiber Tract–based Atlas of Human White Matter Anatomy,” Radiol-
ogy, vol. 230, no. 1, pp. 77–87, 2004.

[20] M. Jenkinson and S. Smith, “A global optimisation method for robust
affine registration of brain images,” Medical Image Analysis, vol. 5, no.
2, pp. 143–156, 2001.

[21] S. Tyan, “Median filtering: Deterministic properties,” Two-
Dimensional Digital Signal Processing II, vol. 43, pp. 197–217, 1981.

[22] P. Fillard, J. Gilmore, J. Piven, W. Lin, and G. Gerig, “Quantitative
analysis of white matter fiber properties along geodesic paths,” Medical
Image Computing and Computer-Assisted Intervention-MICCAI 2003,
pp. 16–23, 2003.

[23] I. Corouge, P.T. Fletcher, S. Joshi, J.H. Gilmore, and G. Gerig, “Fiber
tract-oriented statistics for quantitative diffusion tensor MRI analy-
sis,” Medical Image Computing and Computer-Assisted Intervention–
MICCAI 2005, pp. 131–139, 2005.

ACKNOWLEDGEMENTS

This work was supported by NIH grant R01 HD050735 and the
National Health and Medical Research Council, Australia, grant
NHMRC 496682. Additional support was provided by grants R01
EB008281, P41 RR013642, P41 RR008079, P30 NS057091, R01
EB008432, the University of Minnesota Institute for Translational
Neuroscience and NLM T15 LM07356.

280


