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ABSTRACT 
 
In imaging genomics, there have been rapid advances in 
genome-wide, image-wide searches for genes that influence 
brain structure.  Most efforts focus on univariate tests that 
treat each genetic variation independently, ignoring the joint 
effects of multiple variants. Instead, we present a gene-
based method to detect the joint effect of multiple single 
nucleotide polymorphisms (SNPs) in 18,044 genes across 
31,662 voxels of the whole brain in a tensor-based 
morphometry analysis of baseline MRI scans from 731 
subjects from the Alzheimer’s Disease Neuroimaging 
Initiative (ADNI). Our gene-based multivariate statistics use 
principal components regression to test the combined effect 
of multiple genetic variants on an image, using a single test 
statistic. In some situations, which we describe, this can 
boost power by encoding population variations within each 
gene, reducing the effective number of statistical tests, and 
reducing the effect dimension of the search space. 
Multivariate gene-based methods may discover gene effects 
undetectable with standard, univariate methods, accelerating 
ongoing imaging genomics efforts worldwide.  
 

Index Terms— principal components regression, 
multivariate, voxelwise, imaging genomics, GWAS 
 

1. INTRODUCTION 
 
In imaging genomics, the vast amount of information in the 
images (>100,000 voxels) and across the genome (>12 
million known variants) presents computational and 
statistical challenges when relating genetic variants to the 
structure and function of the brain. Power issues arise due to 
the small effect sizes of each genetic variant, and the huge 
numbers of statistical comparisons.  Most techniques use 
some type of data reduction, limiting the number of genetic 
variants or imaging features studied, or both.  The ultimate 
goal of these gene-hunting studies is to create a method that 

discovers which genetic variants affect the brain in a 
statistically powerful and biologically meaningful way. 

In typical GWAS studies, each genetic variant 
(usually a SNP) is independently tested for its association to 
the phenotype – a mass univariate method, where no data 
reduction is used across the genome. For example, one study 
[1] performed a genome-wide search of around 500,000 
SNPs, and found a novel variant in the GRIN2B gene that is 
associated with temporal lobe volume. The gene GRIN2B 
encodes a glutamate receptor that is already the target of 
drugs (memantine) used to treat Alzheimer's disease. 
Findings such as these are promising as they have biological 
relevance, but do not rely on a prior hypothesis about any 
specific SNP. However, performing mass univariate 
methods on imaging summary measures (such as temporal 
lobe volume) or ad hoc regions of interest (ROI), collapses 
the variation across the brain into a single number. 

Several studies now perform genome-wide searches 
at each voxel across the brain [2]. This approach avoids 
having to pre-select an ad hoc brain region of interest and 
does not require prior hypotheses about which genetic 
variants, or which regions of interest, matter. One study [3] 
performed a genome-wide, brain-wide search, termed a 
voxelwise genome-wide association study (vGWAS), in 740 
subjects from ADNI. However, none of the genetic variants 
identified was significant after multiple comparisons 
correction; several variants were promising candidates for 
further analysis. Future GWAS studies in imaging will likely 
need to reduce the number of tests and multiple comparisons 
using Bayesian priors, machine learning, or dimension 
reduction in the image or the genome. This may prioritize 
certain regions of the image or the genome, for later meta-
analysis across multiple datasets.  

Given recent advances in high-throughput 
genotyping, densely-packed sets of SNPs, or genetic 
markers, can capture increasing amounts of variation 
throughout the genome. Methods that consider combinations 
of SNPs from the same gene should more accurately 
describe gene effects on images than methods that test the 
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independent effect of each SNP [4]. By associating the joint 
effect of multiple SNPs within a gene, in this study we set 
out to show that gene-based approaches can be more 
powerful, in some situations, than traditional univariate 
approaches. For example, if a gene contains multiple causal 
variants with small individual effects, univariate methods 
would miss these associations if a very stringent significance 
threshold is used (as in GWAS). 

We assessed whether it would be feasible to extend 
to a neuroimaging database, a gene-based association 
method using principal components regression (PCReg). We 
applied PCReg across all genes, to a large database of 
voxelwise imaging data. We call our method a voxelwise 
“gene-wide” association study (vGeneWAS). By performing 
association tests on whole genes, we greatly reduce the 
number of tests (from 437,607 SNPs down to 18,044 genes). 
Using a voxel-based approach, we also avoid known 
problems associated with focusing on ROIs or summary 
measures. In addition, we performed direct power 
comparisons between gene-based tests using PCReg versus 
traditional univariate regression methods for GWAS. 
 

2. METHODS 
 
2.1. Imaging Measures 
 
Structural MRI data were obtained following the standard 
ADNI protocol to ensure multisite consistency. Baseline 
MRI scans for each subject were analyzed using tensor-
based morphometry (TBM) as described previously [5]. 
After quality control selection there were 731 subjects with 
genotyping data available (172 AD, 356 MCI, and 203 
healthy elderly controls; 301 women/430 men; mean age ± 
sd = 75.56 ± 6.78 years). We did not split the subjects by 
diagnosis for this analysis, to exploit the broadest 
phenotypic continuum and maximize statistical power to 
detect genetic associations [6]. 
 
2.2. Genotypes and gene grouping 
 
For details on how genetic data were processed for the 
ADNI study, please see [7]. We used several quality control 
measures to filter our SNPs for our analysis as detailed in 
[1]. Briefly, SNPs were excluded with call rate <95%, 
significant deviation from Hardy-Weinberg equilibrium P < 
5.7x10-7, and a minor allele frequency <0.10. After all 
rounds of quality control and preparation, 437,607 SNPs 
remained. Remaining SNPs were then grouped by gene, 
where “gene” is defined by the gene transcript region 
including both introns and exons. SNPs not located in a gene 
were excluded. After quality control, SNP annotation, and 
gene grouping, 18,044 genes were left for analysis. 
 
2.3 Multi-SNP genetic associations 
 

To test the joint effect of all SNPs in a gene on the volume 
difference (calculated from TBM) at each voxel, we 
employed a multiple partial-F test. This first estimates the fit 
of a “reduced model” of any number of nuisance variables 
on a given dependent variable and then estimates the fit of a 
second “full model” with the nuisance variables and any 
number of independent variables on the same dependent 
variable. Each association test results in an F-statistic, which 
represents the joint effect of the independent variables on the 
dependent variable, controlling for nuisance variables 
already in the model.  The multiple partial-F statistic was 
calculated for each gene at each voxel using equation 1 
below. Here k is df(full)-df(reduced) and RSS is the residual 
sum of squares:  
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Multiple partial-F tests are well suited for testing effects of 
multiple predictors on a given phenotype, but genetic data 
sometimes complicates testing because SNPs in the same 
gene are often correlated due to high “linkage 
disequilibrium” (LD). When the SNP values in a cohort of 
subjects are treated as a vector (whose components are the 
SNP value in each subject coded in an additive manner: 0, 1, 
or 2), then statistical correlations between adjacent SNPs on 
the genome can make different subjects’ vectors highly 
collinear. The dependence among these almost collinear 
SNP vectors in the multiple partial-F test model can lead to 
improper signs of beta coefficient estimates, wildly 
inaccurate magnitudes of beta coefficients, large standard 
error estimates, and false inferences.  
  To avoid the complications of collinearity in the 
statistical model, we first performed principal component 
analysis (PCA) on the SNPs within each gene, storing all of 
the orthonormal basis vectors of the SNP matrix that 
explained the first 95% of the variance in the set of SNPs. 
Basis vectors with the highest eigenvalues (higher 
proportions of explained variance) were included until 95% 
of the variance in the SNPs was explained. The rest were 
discarded. These new "eigenSNPs" approximate the 
information in the observed SNPs, but lack the collinearity 
that disrupts the multiple partial-F test models. By first 
performing PCA followed by a multiple partial-F test, our 
method may be considered a variant of PCReg and produces 
F-statistics equivalent to those proposed previously for non-
imaging data [8]. In this study, the independent variables 
built into the multiple partial-F test full model were the 
column vector output from PCA performed on each gene 
with age and sex as covariates. In this way, we tested the 
joint predictive effect of variation throughout a gene on 
brain volume variations on a voxel-by-voxel level. 
 The total number of tests of association for 
vGeneWAS is very high (18,044 genes x 31,662 voxels). 
Because of the massive processing requirement, we coded a 
“threaded” version of the PCA and multiple partial-F test 
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steps of PCReg to split processing over multiple cores in a 
single CPU. Processing was further parallelized over a 
cluster of 10 high-performance 8-core CPU nodes. As a data 
reduction step, we only saved data on the gene with the 
lowest P-value at each voxel (the “top gene” at each voxel). 
The total time required to complete an analysis was 
approximately 13 days. 
 
2.4 Effective number of test for statistical thresholds 
 
As we noted previously [3], the minimum P-value at each 
voxel, in the null case with n independent tests, 
approximately follows a probability density function (PDF) 
such that: 
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The PDF derived from equation 2 is known as a Beta 
distribution with parameters α=1 and β=n. At each voxel, 
selecting the minimum P-value for the top gene then follows 
a Beta(1, n) distribution, where n is the effective number of 
independent tests.      
 However, genetic loci are inherited in contiguous 
segments, and some genes co-segregate in blocks. The allele 
frequencies and structure of genes that co-segregate are 
more similar than would be expected by chance if all 
variants were assumed to be independent. Because of this, 
the effective number of independent tests (Meff) is less than 
the total number of tests performed (M). By determining 
Meff, we can more accurately estimate the total number of 
independent tests performed, given the LD structure of our 
genotype data. 
 In our sample, we estimated Meff by performing 
5000 permutation tests at three randomly selected, 
uncorrelated voxels in the brain. We regressed each of the 
18,044 genes on the permuted residuals of the reduced 
model after including the age and sex covariates at each run, 
and stored the minimum P-value. As only the minimum P-
value is retained (for the best fitting gene), one can build up 
a reference distribution for the minimum P-values, to help 
gauge the level of surprise in seeing associations in the data. 
Storing the minimum P-values of the permutation tests 
yields the expected null Beta distribution given our data. We 
used a maximum-likelihood function to estimate the best fit 
for the null Beta distribution by varying the β parameter of 
Beta(1,β). The value of β approximates the effective number 
of independent tests (Meff) performed on our data.  
 
2.5 Estimation of expected values in simulated maps 
 
A certain amount of spatial smoothness is expected among 
voxels in an image. This is most likely explained by the non-
independence of volume difference measures at adjacent 
voxels. We examined whether the size of voxel clusters 
associated with the same gene from our vGeneWAS analysis 
differed from the cluster sizes expected under the null 

hypothesis of no association at all, given the non-
independence of signals at adjacent voxels in our images. In 
addition, we wanted to determine whether the number of 
unique, top genes from across the brain significantly differed 
from the number of top genes expected by chance. We 
generated 100 3D simulated cluster maps based on a linking 
algorithm that forms connections between voxels across the 
brain based on correlation. The probability of any voxel 
being linked to another voxel was directly related to how 
correlated they are to each other. By considering the 
correlation of a given voxel to all other voxels in the image, 
as opposed to using a single summary measure of 
smoothness throughout an image, we were able to model the 
expected 3D clustering among adjacent voxels and non-
independent, spatially separated clusters. 
 

3. RESULTS 
 

3.1 Comparison of methods 
 
To examine differences between gene-based and standard 
univariate association methods, we compared the results of 
PCReg to linear regression using the temporal lobe volume 
(TLV) data from a previous study [1] as the phenotype. We 
first chose to focus on the top gene or SNP identified by 
each method, in order to examine performance when the 
variant chosen is deliberately selected to favor one of the 
two methods. GRIN2B was identified as the gene with the 
SNP variant that was most significantly associated with TLV 
using a standard univariate GWAS analysis (P=4.03x10-7). 
We plotted the –log10(P-value) of the univariate test for each 
of the SNPs in the GRIN2B gene, in Figure 1a. The PCReg 
gene test results are overlaid (black dotted line). Clearly, the 
main effect detected with linear regression is much greater in 
this case, and the p-values are much smaller (i.e., –log10(P-
value) is higher). Notably, we tested each of the 129 SNPs 
within the GRIN2B gene, which would require any 
significant P-values identified to be corrected for multiple 
comparisons before further study. In comparison, the gene-
based test of GRIN2B using PCReg was a single test not 
requiring correction for multiple comparisons and 
maintained a nominal significance value (P=0.012).  Also, 
we compared BEST3 - the gene identified to be most 
significantly associated with TLV via PCReg - with the 
linear regression output of each SNP within the gene 
(Figure 1b). The main effect of the gene-based test was 
much stronger (P=2.9x10-4) than the best linear regression 
result (P=0.063). This demonstrates a case where variance 
components from individual markers are not significant via 
linear regression, but may be combined into a single 
significant test statistic. 
 
Figure 1. Genetic association plots for univariate linear 
regression versus multi-locus PCReg. The -log10(P-value) 
of each SNP in GRIN2B (a) and BEST3 (b) is plotted against 
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its position in the gene. Each of the points is color coded by 
level of LD (compared to the top SNP, the purple diamond 
dot) as measured by r2.The -log10(P-value) of the gene-based 
PCReg test for each gene is overlaid on the plot for 
comparison (dotted black line). Plots were generated using 
the LocusZoom software package. 

 
 
3.2 Voxelwise GeneWAS 
 
By randomly permuting the images, so that they were not 
assigned to the correct individuals, we compared the 
distribution of the cluster size values in simulated (null) 
maps to the cluster sizes obtained from vGeneWAS (Figure 
2). A large proportion of clusters of voxels associated with 
the same top gene in vGeneWAS were larger than would be 
expected based on completely null data. One estimate 
related to the number of independent voxels is the average 
number of clusters in simulated maps. This was 11900.8 ± 
50.6 (mean ± standard deviation) out of the 31,662 total 
voxels. We used the number of clusters estimated from the 
simulation to randomly select (with replacement) from our 
list of 18,044 genes. We tallied the number of unique genes 
represented for each simulated cluster map and found the 
average was 8721.4 ± 44.9 (mean ± standard deviation).  We 
measured the total number of unique genes as 5333 from our 
run of voxelwise GeneWAS, which is much lower than the 

number of genes expected based on the null cluster maps. 
Combined with our cluster size comparisons, this suggests 
that the top genes identified in our analysis tend to have a 
much more broadly distributed effect than would be 
expected if the data were null, even taking into account the 
intrinsic spatial non-independence of our data. 

Among the top genes identified at each voxel 
across the brain, the GRB-associated binding protein 2 
gene, GAB2, was the most significantly associated gene at 
any voxel (with P=2.36x10-9) in our analysis and has 
previously been linked to late-onset Alzheimer’s disease 
(LOAD). One study [9] identified 10 SNPs from the GAB2 
gene that were significantly associated with LOAD and 
APOE allele status in 1411 cases and controls from 20 NIA-
sponsored Alzheimer’s Disease Centers. In vivo testing 
shows that GAB2 is over-expressed in certain brain regions 
such as the hippocampus and posterior cingulate cortex in 
patients with LOAD [9]. In addition, the AlzGene website 
lists GAB2 as being in the top 20 genes likely related to AD 
(October 20, 2010; http://www.alzgene.org/). We identified 
several other genes highly relevant to brain function; a few 
are: LRDD (P=2.60x10-9), PRPRB (P=2.84x10-9), CHRM5 
(P=1.71x10-8), and S100B (P=4.75x10-8).  

 
Figure 2. Cluster sizes in vGeneWAS (red line) are 
compared with a simulated null map (black line). The 
density of the number of voxels (log10 transformed) in a 
cluster across the brain are plotted. The simulated null map 
contains a larger proportion of small cluster sizes than 
vGeneWAS (higher peaks in the black line at values close to 
the origin on the x-axis). The vGeneWAS map contains a 
larger proportion of large cluster sizes than the average 
simulated null map (the red line is higher at larger values 
and is more extended). A single slice view of the 
vGeneWAS and average simulated null cluster maps are 
pictured for comparison (inset). Every unique cluster is 
assigned its own color. There are more unique clusters than 
distinct colors making visual inspection difficult, but in 
general the clusters in the vGeneWAS maps are larger. 
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3.3 Correction for multiple comparisons 
 
Our Beta-distributed experimental P-values (with 
Meff=15,636) need to be corrected so that their false 
discovery rate (FDR) can be assessed [10]. Using the 
analytic β parameter from the null Beta distribution, we 
fitted a cumulative distribution function (CDF) to our 
observed data yielding a new distribution of corrected P-
values that deviate from the uniform distribution only when 
the data are not null.  
  We found that the false discovery rate for the 
second most highly associated gene in our results (LRDD) 
could only be controlled at a threshold of q=0.30 (i.e., 
allowing a 30% false discovery rate) after applying a 
statistical threshold of Pc=5.36x10-4. In addition, the pFDR 
q-value threshold [11] was q=0.23 for the most significantly 
associated gene at any voxel (GAB2). In other words, the 
vGeneWAS results could not be controlled at the 
conventional false discovery rate, but show promise.   
 
3.4 Power comparisons 
 
To assess the differences in power afforded by vGeneWAS 
relative to existing univariate methods, we compared the Pc-
values from vGWAS obtained in our previous study [3], 
with the Pc-values resulting from vGeneWAS (Figure 3). 
The proportion of Pc-values greater than a given FDR 
threshold for each method is directly related to differences in 
effect sizes. The FDR of the results from vGWAS could 
only be controlled at a threshold value of q=0.50, whereas 
the FDR threshold for vGeneWAS is somewhat lower, 
although not passing the conventional FDR level (q=0.30; 
Figure 3). This suggests that the vGeneWAS method may 
have more power, in principle, to detect genetic associations, 
although neither test controlled the false discovery rate at the 
conventional level. 

 
Figure 3. vGeneWAS may control the false discovery 
rate better than vGWAS. The cumulative distribution 
function (CDF) of Pc-values from vGeneWAS (solid green 
line) is compared to the CDF of Pc-values from vGWAS [3]. 

(solid black line). Three lines represent different correction 
thresholds of q=0.05 (red dashed), q=0.30 (black dashed), 
and q=0.50 (blue dotted). 
 

4. CONCLUSION 
 
We showed that, in certain cases, gene-based methods may 
offer more power than traditional univariate methods. In 
addition, our analysis identified a known Alzheimer’s risk 
gene, GAB2, lending plausibility to the method. Still, effect 
sizes may be too small to detect even with multivariate 
statistics and meta-analytic approaches may prove most 
useful in the future (e.g., in multi-site efforts such as the 
ENIGMA consortium [12]). 
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