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Genetic and environmental factors influence brain structure and function profoundly. The search for
heritable anatomical features and their influencing genes would be accelerated with detailed 3D maps
showing the degree to which brain morphometry is genetically determined. As part of an MRI study that will
scan 1150 twins, we applied Tensor-Based Morphometry to compute morphometric differences in 23 pairs of
identical twins and 23 pairs of same-sex fraternal twins (mean age: 23.8±1.8 SD years). All 92 twins' 3D
brain MRI scans were nonlinearly registered to a common space using a Riemannian fluid-based warping
approach to compute volumetric differences across subjects. A multi-template method was used to improve
volume quantification. Vector fields driving each subject's anatomy onto the common template were
analyzed to create maps of local volumetric excesses and deficits relative to the standard template. Using a
new structural equation modeling method, we computed the voxelwise proportion of variance in volumes
attributable to additive (A) or dominant (D) genetic factors versus shared environmental (C) or unique
environmental factors (E). The method was also applied to various anatomical regions of interest (ROIs). As
hypothesized, the overall volumes of the brain, basal ganglia, thalamus, and each lobe were under strong
genetic control; local white matter volumes were mostly controlled by common environment. After adjusting
for individual differences in overall brain scale, genetic influences were still relatively high in the corpus
callosum and in early-maturing brain regions such as the occipital lobes, while environmental influences
were greater in frontal brain regions that have a more protracted maturational time-course.
© 2009 Elsevier Inc. All rights reserved.
Introduction

3D maps showing the relative contribution of genetic, shared and
unique environmental factors to brain structure can facilitate the
understanding of the influence of genetics on anatomical variability.
Twins have been studied with quantitative genetic models to
estimate these different factors. This approach has detected highly
heritable (i.e., genetically influenced) brain features, such as the
whole brain volume and total gray and white matter volumes
(Posthuma et al., 2002).

Identifying genetically influenced features is important, as genes
at least partially mediate many psychiatric disorders (Van't Ent et
al., 2007). In addition, many cognitive or behavioral measures in
normal individuals, such as full-scale IQ, are highly influenced by
pson).
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genetics (Gray and Thompson, 2004) and are correlated with
measures of brain structure (Reiss et al., 1996; Thompson et al.,
2001; Haier et al., 2004). These image-derived measures (such as
gray matter volume) are often called intermediate phenotypes
when they are associated with an illness and are more amenable to
quantitative genetic analysis (see Glahn et al. (2007a) for a review
of the endophenotype concept). Using this approach, researchers
have identified and confirmed specific genes that are associated
with structural brain deficits in schizophrenia patients (Cannon
et al., 2002, 2005; Pietiläinen et al., 2008; Narr et al., 2008).
Association studies (Sullivan, 2007; Hattersley and McCarthy, 2005)
and twin studies using a cross-twin cross-trait design (bivariate
genetic models) (Posthuma et al., 2002) have also found specific
genes or common sets of genes influencing brain morphology and
cognitive performance.

Environmental factors (e.g., cardiovascular health, nutrition,
exercise, and education) may also exert protective or harmful effects
on the structural integrity of the brain (Raji et al., 2008). In
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epidemiological studies and drug trials, accounting for genetic and
environmental influences on disease progression (e.g., the ApoE4 risk
allele in Alzheimer's disease; Hua et al. (2008b)), may adjust for
confounds in the analysis of treatment effects (Jack et al., 2008).
Twin studies can reveal whether specific neuroanatomical measures
are predominantly influenced by genetics or shared or individual
environments (see Peper et al. (2007) for a review), by comparing
twin pairs with different degrees of genetic affinity. Identical (or
monozygotic, MZ) twins share the same genetic material, whereas
fraternal (or dizygotic, DZ) twins share, on average, only half of
their genetic polymorphisms (random DNA sequence variations that
occur among normal individuals). DZ twins are commonly studied in
lieu of other siblings because they are the same age, preventing any
age-related confounds. Identical and fraternal twin pairs are
compared to ensure, to the greatest possible extent, comparable
upbringings and family environments despite varying degrees of
genetic resemblance.

The earliest neuroanatomical genetic studies used traditional
volumetric measures and region of interest analyses to quantify
similarity between MZ and DZ twins. Whole brain and hemispheric
volumes were found to be highly heritable (N80% for the whole brain
in Pfefferbaum et al. (2000); Sullivan et al. (2001) and N94% for the
hemispheric volume in Bartley et al. (1997)). Gray matter and white
matter volumes were shown to be 82% and 88% genetically deter-
mined (Baaré et al., 2001), respectively. Oppenheim et al. (1989),
Pfefferbaum et al. (2000), Scamvougeras et al. (2003), and Hulshoff
Pol et al. (2006a) showed that the corpus callosum is mostly
controlled by genes, and this was verified at different stages in life.
Findings were less consistent for ventricular volume and shape.
Reveley et al. (1982), Pfefferbaum et al. (2000) and Styner et al.
(2005) showed these structures to be highly heritable, whereas
other studies (Baaré et al., 2001; Wright et al., 2002) determined
that ventricular volumes are equally influenced by genetics (58%)
and environment (42%). Gyral and sulcal patterns were shown to be
widely variable in MZ twins (Weinberger et al., 1992; Bartley et al.,
1997), suggesting strong environmental influences independent of
genetics (Steinmetz et al., 1994).

Computational mapping methods allow the mapping of genetic
influences on structure volumes throughout the brain, without
requiring a priori specification of regions of interest. Among them,
voxel-based methods, such as voxel-based morphometry (VBM)
(Ashburner and Friston, 2000), have revealed genetically mediated
deficits in attention deficit hyperactivity disorder (Van't Ent et al.,
2007), anxiety disorders (De Geus et al., 2006) and schizophrenia
(Hulshoff Pol et al., 2006b). Tensor-Based Morphometry (TBM) is
another voxel-based method that has been used successfully to
detect morphometric differences associated with aging and Alzhei-
mer's disease (Hua et al., 2008a, 2008b), HIV/AIDS (Brun et al.,
2007; Chiang et al., 2006; Leporé et al., 2008a), Williams syndrome
(Chiang et al., 2007), Fragile X syndrome (Lee et al., 2007),
schizophrenia (Gogtay et al., 2008), and normal brain development
(Hua et al., 2009).

As TBM has been extensively used in past studies, we chose this
method to analyze our dataset of 23 pairs of MZ and 23 pairs of
same-sex DZ twins. TBM combines a warping step and a statistical
step to determine local volume changes. Here, we detected local
similarities between MZ and between DZ twins and then compared
these two groups, to determine the genetic and environmental
effects on brain structures. We first hypothesized that brain
structure volumes would be more genetically influenced when
the data is not adjusted for the overall brain size. We also
predicted that the volumes of brain regions that mature earliest in
infancy (e.g., occipital lobes) would be the most highly heritable,
while environmental effects would be more readily detected in
structures that have a more protracted maturational time-course,
such as the frontal lobes.
Methods

Overview

InTBM, a population of images is linearly aligned to a common space,
then nonrigidly registered (i.e., warped) to a common target brain,
chosen either as one of the subjects in the study or as a specially
constructed templatewith themean geometry for the group of subjects
being studied. The local expansion or compression factor applied during
the warping process (also called the Jacobian determinant) is a useful
index of volumetric differences between each subject and the template.
Morphometric differences are assessed by performing a statistical
analysis of the volumetric differences at each location in the brain. Here,
we performed the registration using a fluid registration algorithm first
proposed in Brun et al. (2007) and further developed in Brun et al.
(2008). For more precise quantification of volumes, we used a multi-
template scheme described in Leporé et al. (2008c) rather than using
one single target brain image. We previously studied whether TBM
results dependon the choiceof template for normalization (Leporé et al.,
2007, 2008c, 2008d). In general, we found that the findings regarding
genetic influences are highly consistent, regardless of which template is
used for spatial normalization. This is encouraging because the power to
resolve morphometric variation in TBM depends on the ability to align
each image accurately to the chosen template. In addition,we also found
that it makes very little difference to the results if the warping is
performed on images that have already been segmented into gray and
white matter before spatial normalization (Chou et al., 2008). In Leporé
et al. (2007), we built amean brain template based on averaging a set of
deformation fields, such that the mean deformation tensor of the
mappings from each individual to the template wasminimized in a log-
Euclideanmetric thatmeasureddeviations from the identity tensor. This
involved iterative perturbation of the template until the criterion for the
mean deformation was optimized. Even though the results with this
templatewere very similar to those achievedwith an individual brain as
the target, it can be used to rule out the possibility that template
selection is a source of bias. In complementary work, we also
investigatedwhethermulti-template normalization canprovide greater
power for TBM studies (Leporé et al., 2008d). In that approach, instead
of aligning images to a single brain, we aligned all images to a set of
different templates, and the results were averaged (Chou et al., 2008,
2009a, 2009b); this approach was originally termed targetless spatial
normalization (Kochunov et al., 2002) and is related to multi-atlas
segmentation methods (Heckemann et al., 2006). This multi-template
method can increase the statistical power to detect disease effects and
also leads to more accurate segmentations, as it reduces the overall
impact of errors in individual registrations by fusing information from a
large number of registrations among different pairs of brains in the
study. We assessed anatomical resemblance within twin pairs by
computing intraclass correlation coefficient (ICC) maps for the MZ and
DZ twins. Falconer's heritability statistics (Falconer, 1989), which
estimate the proportion of variance due to genetic differences, were
computed at each voxel and displayed as a map (as in Thompson et al.
(2001)). Using a more advanced modeling approach (developed in
Chiang et al. (2008), Lee et al. (2009), and based on Neale et al. (1999)),
we fitted a structural equation model (SEM) to estimate the proportion
of local volumetric variability attributable to genetics, shared and
unique environmental factors across the whole brain. This variability
was estimated both before and after adjusting the data for individual
differences in overall brain scale. The same technique was applied for
various lobar and subcortical regions of interest (ROIs) traced on the
brain template.

Participants

We scanned 23 pairs of monozygotic (MZ) (11 male and 12 female
pairs) and 23 pairs of same-sex dizygotic (DZ) twins (10 male and 13
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female pairs), recruited as part of a 5-year research project that will
eventually evaluate 1150 twins. As explained below, to eliminate bias
and improve registration accuracy, we used a multi-template
approach in which we aligned all the scans to a set of 5 target brains
randomly selected from our database (Leporé et al., 2008d). These
scans were performed with the same protocol on 5 healthy subjects
that are not included in the genetic analysis (one of them was a
monozygotic twin, 2 of themwere members of two different dizygotic
twin pairs, and 2 did not have twin siblings). These scans were used as
templates for the fluid registration step (see Image acquisition and
preprocessing), and all the other images were fluidly registered to
each of them. The age range for the subjects was 22–25 years old for
all the subjects, including the templates (mean age: 23.8±1.8 SD
years). Each subject was informed of the goals of the study and signed
a consent form. The study was approved by the appropriate
Institutional Review and Research Ethics Boards.

Zygosity was established objectively by typing nine independent
DNA microsatellite polymorphisms (Polymorphism Information
ContentN0.7), using standard polymerase chain reaction (PCR)
methods and genotyping. These results were cross-checked with
blood group (ABO, MNS and Rh), and phenotypic data (hair, skin and
eye color), giving an overall probability of correct zygosity assign-
ment of greater than 99.99%. All subjects underwent physical and
psychological screening to exclude cases of pathology known to
affect brain structure. None of the twin subjects reported a history of
significant head injury, neurological or psychiatric illness, substance
abuse or dependence, or had a first-degree relative with a psychiatric
disorder.

Image acquisition and preprocessing

All MR images were collected using a 4 T Bruker Medspec whole
body scanner (Bruker Medical, Ettingen, Germany) at the Center for
Magnetic Resonance (University of Queensland, Australia). Three-
dimensional T1-weighted images were acquired with a magnetization
prepared rapid gradient echo (MP-RAGE) sequence to resolve anatomy
at high resolution. Acquisition parameters were: inversion time (TI)/
repetition time (TR)/echo time (TE)=1500/2500/3.83 ms; flip
angle=15°; slice thickness=0.9 mm with a 256×256×256 acquisi-
tion matrix.

Extracerebral (non-brain) tissues were manually deleted from the
MRI images using the 3D interactive program, Display (Montreal
Neurological Institute, McGill University, Canada). All scans were then
aligned to the ICBM53 template using 9-parameter registration (i.e.,
translational and rotational alignment, allowing scaling in 3 indepen-
dent directions) found in the FMRIB's Linear Image Registration
Toolbox, FLIRT (Jenkinson et al., 2002). The ICBM53 template is one of
the several standardized adult brain templates, and was generated by
nonlinearly registering and averaging 53 high-resolution brain MRI
scans in the ICBM standard space to improve the signal-to-noise ratio
(Collins et al. (1995); Montreal Neurological Institute, McGill
University, Canada).

Fluid registration

Non-rigid warping is usually performed by registering each
subject's image, S, to a common target image, T. Most commonly,
this target is an image selected from the data set or a specially
constructed Mean Deformation Template (MDT), which has the
average geometry (shape) and intensity for the group of subjects
studied (Kochunov et al., 2001). Sometimes, a single image is used
rather than a group average, because it has sharper features and
greater anatomical detail. The choice of an MDT can affect the
precision of the registration (Kochunov et al., 2001; Leporé et al.,
2008b). To avoid any bias in the registration, we did not use one
single target image. Instead we used the multi-template method
described in Leporé et al. (2008d), which is a variant of previously
proposed multi-template registration approaches; we registered all
the subjects to four different templates. The use of four templates
offers a reasonable trade-off between using more templates, which
can reduce registration errors but is very time consuming, and
preserving computational efficiency, which requires keeping the
number of templates reasonably low (see Chou et al. (2008), for an
optimization study).

These four templates were fluidly registered to a common 5th
template (see Image acquisition and preprocessing for a description of
these subjects). These registration vector fields were concatenated
with the previous registrations, so that all the obtained vector fields (4
per subject) sit in a common space.

For each subject, Jacobian matrices J were derived from these four
vector fields (see Measuring volumetric differences). As all the
defined mathematical entities (four vector fields and their four
corresponding Jacobian matrices per subject) were computed in a
common space, we computed Javerage from the four Jacobian matrices
existing at each voxel. We used the mean defined in Arsigny et al.
(2006), which means is defined in a Riemannian space).

The first deformable registration methods were inspired by
continuum mechanics. In these elastic or fluid registration
approaches, the image is considered to be embedded in a 3D
elastic or fluid medium and its deformation at each voxel is
governed by mechanical equilibrium equations. A similarity
measure is defined between the deforming image and the target
image (simple squared-intensity difference, cross-correlation or
information-theoretic measures, such as normalized mutual infor-
mation or Jensen–Rényi divergence (Chiang et al., 2006)) and this
similarity term is included as a force term in a partial differential
equation (PDE), that regularizes the deformation to avoid any
folds or tears in the image (see Christensen et al. (1996); Bro-
Nielsen and Gramkow (1996); Gramkow (1996); Leporé et al.
(2008b)).

Fluid registration methods have been advocated as they
guarantee diffeomorphisms (i.e., smooth, invertible, one-to-one
mappings) even when the magnitude of the deformations is large
(Christensen et al., 1996), whereas elastic registration methods are
typically simpler to implement but only generate diffeomorphic
mappings when the deformations are small in magnitude. Our
study used a fluid registration algorithm built upon an elastic
registration method that was developed in a Riemannian frame-
work by Pennec et al. (2005). This method ensures diffeomorphic
maps when matching anatomy across subjects (for details, see Brun
et al. (2007, 2008)).

It is worth noting that the twins' images are not registered by
aligning one twin's image directly to the other twin's image. Instead
they are each individually aligned to a common target image from a
randomly selected control subject who is not a member or the twin
pair. As such, because the MZ twins vary as much, as a group, as the
DZ group (and the general population). The most important factor
for the registration is how much they deviate from the target image.
As the target image was not the other member of a twin pair used
in the analysis, and was an unrelated individual, a zygosity×regis-
tration error interaction is unlikely. Consequently, statistical mea-
sures assessing resemblance between members of twin pairs can be
computed from registration-derived measures without any bias
introduced by the registration.

Statistical analysis

Measuring volumetric differences
For each registration, there is a corresponding displacement vector

field. At each voxel, each of the registrations (four per subject) gives a
3-component vector (noted ux, uy, uz), that describes the displacement
of a particle from the template to the initial image (defined in the
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template coordinate system). From those vectors, a Jacobian matrix is
computed, defined as

J =

A x − uxð Þ
Ax

A y − uxð Þ
Ay

A z − uxð Þ
Az

A x − uy

� �
Ax

A y − uy

� �
Ay

A z − uy

� �
Az

A x − uzð Þ
Ax

A y − uzð Þ
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A z − uzð Þ
Az

0
BBBBBBBBB@
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Scalar values such as the trace, geodesic anisotropy or the determinant
of the matrices may be analyzed (Leporé et al., 2008a). Here, we chose
to focus on the analysis of det( J), the expansion factor that detects
local volume changes; this is the most common form of TBM analysis.
det J u→

� �
N 1 indicates a local volumetric expansion of the image being

studied in comparison to the template and det J u→
� �

b1 indicates a local
volume shrinkage.

Measuring the genetic influence on brain structures

Intraclass correlation and Falconer's heritability statistic. To measure
the resemblance between twin pairs, we first computed the intraclass
correlation coefficient (ICC) for both the MZ and the DZ groups,
according to the formula:

ICC = σ2
b = σ2

b + σ2
w

� �
: ð1Þ

Here, σb
2 is the pooled variance between pairs and σw

2 is the variance
within pairs (Scout and Fleiss, 1979).

Heritability is the proportion of the variation in a measurement
that is attributable to genetic factors. We first computed Falconer's
heritability statistic, h2, defined as twice the difference in correlation
between MZ and DZ pairs.

h2 = 24 r MZð Þ− r DZð Þð Þ

Here, r(MZ) and r(DZ) are the ICC measures for the MZ and DZ
groups, respectively. This statistic has been debated in the twin
literature as it is based on the equal environments assumption (that
MZ and DZ twins have comparable rearing environments; see
Thompson et al. (2002) for a discussion). Even so, it is perhaps the
most widely-reported index of genetic effects on a trait (e.g., in the
twin studies reviewed by Peper et al., 2007), sowe report it first before
going on to a more sophisticated analysis of genetic effects, based on
structural equation models.

We did not want to assume that the data on volumetric differences
(here det( J)) were normally distributed, so we computed p-values
at each voxel with a voxelwise permutation test, to establish a null
distribution for the ICC statistics at each voxel (Nichols and Holmes,
2002). The null hypothesis for the intraclass correlation was
ICC=0 (no correlation). At each permutation, a given subject's scalar
map det(J) was randomly assigned to another subject, and a null
distributionwas computed at each voxel; the r-values computed from
this randomly-generated distribution were compared to the r-values
for the true assignment to give statistical maps of the significance of
the ICCs. All voxels from the same subject were permuted in the
same way at each randomization, as is required to maintain spatial
continuity of the null distribution. The resulting permutation-based
(non-parametric)p-value is defined as the quantile of the empirical null
distribution where the real data falls. To control the standard error of
p, we performed 5000 permutations at each voxel (Edgington, 1995).

To control for multiple spatial comparisons implicit in computing
maps of statistics, we computed the omnibus probability, which we
call pcorrected, using the suprathreshold volume, for maps thresholded
at p=0.05. This value assesses the overall significance of the
observed pattern of effects in the statistical maps (Nichols and
Holmes, 2002). These values were computed for both MZ and DZ
probability maps.

Structural equation modeling. Eight regions of interest (ROIs) were
manually traced on the 5th (common) template, using BrainSuite
(Shattuck and Leahy, 2002). These ROIs consisted of the five lobes,
the thalamus, the lateral ventricles and the basal ganglia. For each
individual, the volume of each ROI was computed using the
determinant of the Jacobian matrix, by integrating its value over
the appropriate region in the template (see Measuring volumetric
differences). This allows the volume of the ROI in each subject to
be estimated.

A variance component analysis was performed at each voxel in
addition to the analysis of the lobar ROI volumes by fitting structural
equation models (SEMs) at each voxel in the images. This method
was first implemented and promoted by Neale et al. (1999) with the
genetic modeling program, Mx. Here, we used a more computation-
ally efficient version that we recently implemented to permit a voxel-
wise analysis (Chiang et al., 2008; Lee et al., 2009). To analyze genetic
and environmental correlations in twins, structural equation models
can compute the relative contributions of additive genetic (A), shared
environmental (C) and random environmental (E) components to
the variance in the observed local and ROI volume, y. For each twin
subject, we can model the value of y as the combination of three
latent factors, y=aA+cC+eE; by standard analysis (Neale et al.,
1999), the covariance matrix ∑ for the vector (y1, y2)T, where 1 or 2
stands for the first or second twin in the same pair, can be modeled
by:

∑ = cov y1; y1ð Þ cov y1; y2ð Þ
cov y1; y2ð Þ cov y2; y2ð Þ

� �
= a2 + c2 + e2 γa2 + c2

γa2 + c2 a2 + c2 + e2

 !

ð2Þ

where cov(u, v) means covariance between u and v. γ=1 for MZ
twins, and γ=1/2 for DZ twins, as MZ twins share all and DZ twins
share on average half of their genetic polymorphisms. Since A, C, and
E are unobservable variables, the path coefficients Θ=(a, c, e) are
estimated by comparing the covariance matrix implied by the model,
∑(Θ), with the sample covariance matrix (S) of the observed variables
(y1 and y2), using maximum-likelihood fitting (Fornell and Larcker,
1981).

FLM;β = log j∑ Θð Þ j + trace ∑−1 Θð ÞS
� �

− log jS j − p ð3Þ

Here, p=2 is the number of observed variables. Under the null
hypothesis that S=∑(Θ), minus twice the logarithm of the like-
lihood ratio was simplified to TLM,Θ=(nMZ−1)FML,Θ,MZ+ (nDZ−1)
FML,Θ,DZ, which follows a χ2 distribution with p(p+1)t degrees of
freedom, where t=3 is the number of free model parameters, and
nMZ and nDZ are the number of MZ and DZ twin pairs. Acceptance
of the null hypothesis (pN0.05) indicates a good fit for the model.
The maximum-likelihood computation was performed to find the
model parameters and expected covariance for both MZ and DZ
pairs.

If the variance in the data at each voxel is assumed to be normal,
χ2 values could be used to measure the agreement between the
observed and expected covariance matrices, as χ2 is essentially a
goodness-of-fit index. To free our fitted SEMs from any assumption
that the data were normally distributed, we used a permutation-
based method to determine the goodness-of-fit (Lee et al., 2009;
Chiang et al., 2008; Bollen and Stein, 1992). FML,Θ,DZ was minimized
using an optimization method in the original and in the 5000
permuted samples in which the twin pair's MZ and DZ labels were
randomly shuffled. At each permutation, three hypotheses with
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different Θ were evaluated, in order to fit the ACE, AE or CE models
and the p-values pace, pce, and pae were determined separately by
comparing the value of TLM,Θ for the real distribution to the one of the
permuted distribution. For each null hypothesis, the sample data was
rescaled since the permutation distribution of χ2 statistics, TLM,Θ can
Fig. 1. Top row: Intraclass correlation maps are shown for the monozygotic twins (rMZ; left
(left) shows the sections for which statistics are displayed; maps of Falconer's heritability est
values (significance) of the intraclass correlation in monozygotic twins (ICCMZ) and dizygot
differ from its original distribution. At each voxel and for each region,
the three probabilities p-values pace, pce and pae were compared and
the A, C and E values resulting from the best model were retained.
The best model was defined by the p-value that was greater than the
two others and also greater than 0.05 (a p-valueb0.05 indicates a
panel) and for the dizygotic twins (rDZ; right panel). Middle row: An anatomical image
imate (h2) show high heritability in subcortical regions. Bottom row: Maps show the p-
ic twins (ICCDZ).
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lack of fit to the data and rejection of the model — note that this is
analogous to the convention in standard multivariate regression,
where a p-valueb0.05 denotes rejection of the null hypothesis, but in
our case the genetic model, consisting of the ACE factors, is rejected
when pb0.05. The model is therefore considered to fit when the p-
valueN0.05. Even so, the significance of a specific term in a model
(such as the A term) can be assessed by comparing the χ2 goodness-
of-fit values of the two competing models also has a χ2 distribution,
and its significance can be reported in the conventional way, with
pb0.05 denoting that the added term provides a better overall fit
to the data).

A similar path analysis and structural equation model can be used
to estimate the A, D and E parameters (relative contributions of
additive genetic factors, genetic dominance effects and random
environmental components, respectively on the observed volumes).
The ADE model differentiates two genetic effects: the sum of all the
effects of individual genetic loci (A) and the result of any interactions
between alleles at the same genetic locus (D) (Maes, 2005). When
the genetic dominance term fits, the DZ correlation tends to be less
than half of the MZ correlation (here we take γ=1/4 to fit D and
γ=1/2 to fit A).
Fig. 2. Variance component maps for additive genetic (a2 — top left), common (c2 — top rig
right: Color-coded maps representing the model choice at each voxel— light blue (yellow an
respectively). The corresponding anatomical sections (a–g) are shown in Fig. 1 – middle lef
Estimating phenotypic variance in the population
To examine the variability of the measured phenotypes (Jacobian

determinants, det(J), at each voxel, and ROIs volumes), we
computed the mean and variance of each volumetric measure
across the sample. To avoid any bias in estimating variance, we
chose a group composed of one subject per pair in the MZ and the
DZ groups, taken randomly.

Results

Intraclass correlations and Falconer's heritability estimates

Fig. 1 shows the intraclass correlation computed for local
volumes in both identical and fraternal twins (top left: rMZ and
top right: rDZ). Red colors indicate a high correlation (r close to 1),
whereas blue colors indicate no detectable correlation (r=0). The
significance of the intraclass correlations was assessed by computing
p-values corrected for multiple comparisons (bottom left: pICC(MZ),
pcorrected=0.034; bottom right: pICC(DZ), pcorrected=0.025). A com-
parison of these two intraclass correlations is given by the maps of
Falconer's heritability statistics (h2, middle right panel). Red colors
ht), and unique environmental (e2 — bottom left) factors for the unscaled data. Bottom
d red, respectively) indicates that the best fitting model is obtained with ACE (AE and CE,
t.
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indicate greater heritability. The left panel in the middle row shows
the common anatomical template and the colored lines indicate the
different sections exhibited in the color maps. Three features are
evident: first, for most subcortical regions, MZ twin volumes are
correlated between members of the pair at around r=0.5, with
values much closer to zero for DZ twins. Second, a correction for
multiple comparisons reveals that the overall pattern of correlations
in the DZ twins is significantly greater than zero; strictly speaking, a
higher proportion of the brain has correlations exceeding the
p=0.05 threshold than would be expected by chance if the null
hypothesis of no correlation were true. Third, the high values of
heritability (right panel in the middle row), with values over 0.5 for
the majority of the subcortical regions, are based on twice the
difference in the intraclass correlations for the MZ and DZ twins.
These give an estimate of the proportion of the variance in those
regions that is genetically mediated. As is also implied by the
structural equation models below, the heritability maps suggest that
the anatomy of the MZ twins resembles each other to a greater
degree than the anatomy of the DZ twins in ventricular, callosal,
Fig. 3. Variance component maps for additive genetic (a2 — top left), common (c2 — top right
Color-coded maps representing the model choice at each voxel — light blue (yellow and red
respectively). The corresponding anatomical sections (a–g) are shown in Fig. 1 – middle lef
limbic (cingulate gyrus), occipital and anterior temporal regions.
While DZ twins resemble each other to a greater degree than
randomly chosen individuals of the same age and sex.

Genetic and environmental influences on brain structure variability

The influence of additive genetic (A), as well as shared (C) and
unique (E) environmental factors on brain structure volumes are
mapped in Figs. 2 and 3 for the unscaled and scaled data, res-
pectively. The corresponding values are also reported for eight ROIs
in Table 1 (unscaled data) and Table 2 (scaled data).

Figs. 2 and 3 display voxelwise maps of the ACE variance
components. In each map, the proportion of the overall variance is
expressed on a scale of 0 (dark blue) to 75% (red). The variance
components, a2, c2, e2 are proportions, and vary from 0 to 1, but their
contribution to the overall variance is often stated as a percentage. In
the bottom left panel, color-coded maps show the model that
provided the best fit. Light blue corresponds to the ACEmodel, yellow
to the AE model and red to the CE model.
), and unique environmental (e2 — bottom left) factors for the scaled data. Bottom right:
, respectively) indicates that the best fitting model fit is obtained with ACE (AE and CE,
t.



Table 1
Measures of the intraclass correlation coefficients (ICC) for the MZ and DZ groups, Falconer's heritability estimate (h2), the additive genetic (a2), dominant genetic (d2), shared (c2)
and unique environmental (e2) variance components, their confidence interval, the probability p (computed from the structural equation models; these exceed 0.05 when the model
fits) and the model that provided the best fit when explaining variance in the volumes of these brain regions across subjects for the unscaled data.

Regions WB Fr Par Temp Occ Lmbc Vent BG Th

ICCMZ 0.87 0.86 0.87 0.88 0.87 0.85 0.71 0.86 0.84
ICCDZ 0.74 0.74 0.74 0.74 0.75 0.77 0 0.71 0.76
h2 0.26 0.25 0.27 0.29 0.24 0.17 1.42 0.30 0.17
a2 (%) 34.82

(0.47–65.66)
35.28
(0.32–54.18)

33.18
(3.07–55.81)

36.58
(31.89–96.97)

33.26
(30.69–91.19)

27.81
(1.85–36.86)

0 (0–49.64) 39.58
(0.22–42.57)

24.08
(0.05–68.59)

c2/d2 (%) 55.03
(1.52–56.59)

54.44
(28.16–73.67)

56.57
(0–57.26)

54.98
(0.15–55.90)

56.71
(4.9–56.93)

62.03
(30.17–78.73)

63.51
(0.79–63.91)

49.43
(17.02–95.13)

63.67
(9.43–98.97)

e2 (%) 10.14
(7.87–53.03)

10.28
(7.51–41.24)

10.25
(5.65–85.93)

8.44
(1.90–38.22)

10.03
(3.23–40.38)

10.15
(10.13–51.53)

36.49
(0.80–63.91)

10.99
(0.35–70.10)

12.26
(0.26–41.98)

Probability 0.74 0.74 0.77 0.58 0.56 0.41 0.09 0.91 0.74
Best fitting model ACE ACE ACE ACE ACE ACE ADE ACE ACE

Falconer's heritability estimate is usually considered to be 1 if 2(rMZ-rDZ) exceeds 1. As noted in the main text, the a2 coefficient is a more reliable estimate of heritability than
Falconer's estimate.
ROIs: WB—Whole brain; Fr— Frontal lobes; Par— Parietal lobes; Temp — Temporal lobes; Occ— Occipital lobes; Lmbc — Limbic lobes; Vent— Ventricles; BG — Basal Ganglia; Th—

Thalamus.
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If we assume that all the regions of the brain have a partially shared
genetic influence related to overall scale of the brain, thenafter adjusting
for individual differences in brain scale across subjects, a lesser residual
effect of genetic factors should remain (this is based on the fact that
overall brain volume is heritable). Therefore, we hypothesized that all
brain regions would show a higher heritability prior to the adjustment
and we also expected the proportion of variance due to environmental
factors to be greater in the unscaled data.

Fig. 3 shows that the influence of genetic factors is detectable
throughout the brain in the unscaled data (top left): from 20% of the
genetic variance in thewhitematter to 75% in subcortical structures such
as the corpus callosumand theventricles, 20–40% in thebasal ganglia and
the thalamus and 50% in the occipital lobes (d). The effects of the shared
environment, as shown by the c2 values (Fig. 2, top right panel), aremore
prominent than their genetic counterparts in the frontal lobes and in the
whitematter, such as the internal capsule, the uncinate fasciculus and the
superior longitudinal fasciculus. The unique environment variance (e2)
mapsdemonstrate highvariance in the graymatter. As this termaccounts
for the individual environmental influence andmeasurement errors from
all sources, it is not possible to distinguish unique environmental effects
from sources of measurement errors that are uncorrelated between the
twins. These maps should therefore be interpreted cautiously.

As hypothesized, the scaled maps showed less genetic effects
throughout the brain (see Fig. 3 — top right). While scaling the data
depleted the effects of the common environment on brain structure
(only the white matter partly exhibits c2 values equal to 20–30%), the
genetic influence is still very strong in the limbic lobe, and the
subcortical structures, the ventricles in particular (60%). Effects are
Table 2
Measures of the intraclass correlation coefficients (ICC) for the MZ and DZ groups, Falconer's
and unique environmental (e2) variance components, their confidence interval, the probabili
fits) and the model that provided the best fit when explaining variance in the volumes of t

Regions WB Fr Par Temp

ICCMZ 0.21 0.38 0.09 0.12
ICCDZ 0.33 0.46 0.26 0.21
h2 0 0 0 0
a2 (%) 0 0 – 14.91

(0–25.23) (0–34.76) – (0–38.41)
c2/d2 (%) 27.13 42.29 – 0

(3.27–61.47) (0–45.53) – 0
e2 (%) 73.87 57.05 – 85.08

(24.43–89.48) (19.70–83.03) – (61.58–100)
Probability 0.26 0.54 – 0.55
Best fitting model ACE ACE No fit AE

Falconer's heritability estimate is usually considered to be 1 if 2(rMZ-rDZ) exceeds 1. As no
Falconer's estimate.
ROIs: WB—Whole brain; Fr— Frontal lobes; Par— Parietal lobes; Temp — Temporal lobes; O
Thalamus.
also noticeable in the occipital lobes (20–30% – top left – d). The
comparison of the top right panels in Figs. 2 and 3 shows that overall,
genetic influences (a2) are relatively high in the subcortical areas, aswell
as in the occipital areas, which are the earliest to mature in infancy.

To summarize the effect of the three factors on global structure
volumes, ICC, h2 and proportion of variance factors were computed for
the five lobes, the ventricles, the thalamus, the basal ganglia and the
whole brain (Tables 1 and 2). In the unscaled data, the proportion of
genetic, shared and unique environmental variance was approxi-
mately the same for all the lobes (see Table 1), with around 30–40% of
the variance being attributable to genetic differences in the cohort.
The shared environment also accounted for around half of the
variance in these volumes, with the rest of the differences being
attributable either to unique environment or measurement errors.
Volumes for the basal ganglia and the thalamus were shown to be
influenced by genetic factors (A), as well as shared (C) and unique (E)
environmental factors (a2=40%, and c2=50%, for the basal ganglia—
a2=25% and c2=63% for the thalamus). Between 60% and 70% of the
variance in ventricular volumes was attributable to dominant genetic
factors (the ADE model resulted in a better fit than the ACE model,
whichmay be related to the undetectable DZ correlation (ICC=0) and
to the increased difference between MZ and DZ correlations (N1/2).
This value was still high (50% to 70%) in the scaled data (Table 2),
where the ADE model was also proved to be the best fit. The strong
influence of genetics was also seen in the thalamus and basal ganglia
(where a2=58% and d2=57%, respectively). Even so, the genetic
influence on the whole brain volume was considerably smaller after
scaling, whereas the effect of the common environment decreased
heritability estimate (h2), the additive genetic (a2), dominant genetic (d2), shared (c2)
ty p (computed from the structural equation models; these exceed 0.05 when the model
hese brain regions across subjects for the scaled data.

Occ Lmbc Vent BG Th

0.55 0.57 0.59 0.49 0.61
0.26 0.12 0 0.35 0
0.58 0.91 1.17 0.27 1.21
46.84 17.27 0 56.97 0
(1.46–65.11) (0.02–79.76) (0–34.92) (0–99.93) (0–68.10)
7.01 34.54 53.12 0 58.32
(5.72–54.36) (0.01–41.67) (9.40–53.62) 0 (1.66–58.67)
46.13 48.18 46.88 43.03 41.68
(28.53–72.13) (28.75–73.95) (26.14–73.95) (0–99.99) (0–79.60)
0.38 0.06 0.23 0.61 0.25
ADE ADE ADE AE ADE

ted in the main text, the a2 coefficient is a more reliable estimate of heritability than

cc— Occipital lobes; Lmbc — Limbic lobes; Vent— Ventricles; BG — Basal Ganglia; Th—



Fig. 4. Variance of the Jacobian across the population for the unscaled (left) and the scaled data (right) displayed as the percentage of the mean at each voxel. Here, blue indicates a
small variance in the trait (0%), whereas red indicates a higher variance (5%). It is worth noting that values in the unscaled white matter are higher than values in the scaled white
matter except for the subcortical regions (1% versus 0.3%).

Table 3
Standard deviation of the ROI volumes across the population reported as a percentage of
the mean of the whole region.

Regions WB Fr Par Temp Occ Lmbc Vent BG Th

Unscaled 8.99 8.94 8.93 8.71 8.81 8.69 17.31 8.93 8.91
Scaled 0.41 0.40 0.67 0.71 10.37 17.11 11.84 0.77 11.41

ROIs: WB — Whole brain; Fr — Frontal lobes; Par — Parietal lobes; Temp — Temporal
lobes; Occ — Occipital lobes; Lmbc — Limbic lobes; Vent — Ventricles; BG — Basal
Ganglia; Th — Thalamus.
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from 10%. This trend was found for all lobar structures except for the
occipital lobes (ascaled2 =47%) and the temporal lobes (ascaled2 =15%).

In the scaled and unscaled data, the A, C, E or A, D, E terms fitted in
all cases except for the parietal lobes (where the best p-value=0.01
was found for the ACEmodel in the scaled data, and indicates a lack of
fit). The full ACEmodel gave the best fit for all the structures except for
the lateral ventricles (where pace=0.048 and pade=0.091) in the
unscaled data. In comparison, the best fit with ACE was found in the
scaled whole brain and frontal lobes only (p=0.26 and p=0.54,
respectively). The ADE model was the best fit for the most genetically
influenced structures, such as the occipital lobes, the ventricles, and
the thalamus, whereas the AE model performed better in the basal
ganglia (pace=0.44, pade=0.40 and pae=0.61) and in the temporal
lobes (pace=0.41, pade=0.36 and pae=0.55).

Overall, when the scaling effect was removed, the explanatory
value of the genetic term (A) decreased in all lobar regions. This is in
line with expectation, because the variance in substructure volumes
obeys an approximate power law relative to the overall size of the brain
(Thompson et al., 2003); in other words, the logarithms of the
substructure volumes and overall brain volumes are tightly correlated
in normal populations. Because of this dependency, some of the
variance in substructure volumes is correlated with variations in
overall brain volume, which is also highly heritable (see Table 1 and
Introduction). If some of the same genes that influence substructure
volumes also influence the overall brain volume (which is likely), then
adjusting for overall brain volume is likely to decrease the remaining
genetic proportion of variation in substructure volumes. However, if
different genes mediate overall brain volume and substructure
volumes, adjusting for overall brain volume may (at least in theory)
increase the proportion of the remaining variation in substructure
volumes that is genetically mediated. In our data, even after adjusting
for brain volume (see Fig. 2), the adjusted occipital, limbic lobar
volumeswere still genetically influenced. Temporal lobe volumeswere
also controlled by genetics before and after adjustment, but to a lesser
extent, which may be explained by a high c2 value in the inferior
temporal lobes, and a high a2 value in the anterior temporal area, that
persisted after scaling (see Fig. 2 – top right and left – f and g and Fig. 3
– top left – f and g). The environmental (C) component remained high
in frontal regions. This effect was not seen for subcortical structures,
where the genetic term was still dominant in the lateral ventricles,
basal ganglia and thalamus after adjusting for brain scale.
Phenotypic variability in the population

Fig. 4 shows the voxelwise variance of the phenotype in our
sample. Whether the brains are scaled or unscaled, variance remains
relatively high in the subcortical regions (around 5%), where the
genetic influence is the highest (see the two previous paragraphs).
Second, although not so clearly evident, values measured in the lobar
white matter (Figs. 4 f and g) show a difference in variance between
the unscaled and the scaled data (1% and 0.3%, respectively). This
effect is also shown in Table 3, where a similar measurement is
presented for the ROIs. While the variance is higher in the unscaled
data (8% versus 0.6% for the scaled data) for the whole brain volume,
frontal, parietal, temporal lobar and basal ganglia volumes, the scaling
has little influence on the other structures that are the most gene-
tically determined.

Discussion

Findings

In this study, we combined Tensor-Based Morphometry, a method
that analyzes morphological brain differences, with models tradi-
tionally used in genetic studies, including structural equation
models, which were computed using a new and efficient method
(Chiang et al., 2008; Lee et al., 2009). The study had three main
findings. First, we computed correlation maps to visualize the level of
anatomical similarity for identical and fraternal twin groups, from
which we derived a commonly used measure of heritability. This
voxelwise method indicated a genetically mediated component of
variance in subcortical regions (≈50%). The maps revealed the
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expected pattern of genetic influence for a heritable trait, in which
identical twins resembled each other the most, and fraternal twins
less so. The resemblance for each type of twin was significant overall
and was statistically confirmed to be greater than that likely to be
observed by chance in random pairings of individuals of the same
age and sex.

Subcortical regions, in particular the lateral ventricles and corpus
callosum, and the occipital lobes that mature the earliest in infancy,
showed strong evidence of hereditary influences even after adjust-
ment for whole brain scale. Our voxel-based maps of the heritability
indicated genetically influenced regions previously implicated in
independent studies by Hulshoff Pol et al. (2006a), such as limbic
regions (such as the cingulate gyrus), anterior temporal and
occipital lobe regions. In Hulshoff Pol et al. (2006a), the authors
used VBM and structural equation models. The additive genetic
components of variance, a2, were slightly higher in their study than
the ones in our study for similar regions (e.g., ≈80% versus ≈40%
for unscaled data). This may be attributable to a larger e2 com-
ponent in our study (which contains any measurement errors).
Differences may be due to differences in the definitions of regions of
interest. In addition, in sample sizes around 100 subjects (as were
used in this study and the one by Hulshoff Pol et al. (2006a)), there
is a certain margin of error in estimating a2, and these confidence
intervals have been reported to allow comparisons with other
reports and with future studies.

Also, as hypothesized, when unscaled data was assessed (i.e.,
before accounting for differences in overall brain scale), the propor-
tion of genetic variance was higher for all the unscaled lobar volumes
compared to the unscaled volumes. This is reasonable given that brain
volume is itself heritable and is correlated with regional volumes
(Giedd et al., 2007). This finding is also supported by prior twin
studies (Pfefferbaum et al., 2000; Bartley et al., 1997).

Third, our ACE variance component models largely confirmed the
results obtained with the statistical maps, namely that genetic
influences were relatively strong subcortically. Very similar results
were found for the voxelwise maps as for the ROIs. Even so, voxelwise
maps, derived from the SEMs, may be used to define a more detailed
pattern for the different influences. For example, the superior/
anterior regions of the temporal lobes were found to be under genetic
control, whereas their inferior parts were more influenced by
common environment, at least in the unscaled data. We also observed
strong shared environmental effects on all the unscaled structure
volumes except the ventricles, which was not observed in other
studies. This finding may be due to the mean age and small variance
of the sample population (young adults). As the brain changes
throughout life, one might propose that the common environmental
effects are at their strongest immediately after the teenage years (the
age range studied here) and that this effect may decrease with age, as
the twin subjects no longer live in the same environment. A similar
explanation has been proposed in prior studies of heritability of IQ, in
which effects of the childhood rearing environment were detected
early in life but dissipated later in life when the twin subjects lived
apart. After scaling effects were removed, subcortical structures were
generally the most highly genetically influenced, while frontal lobe
volumes were mostly influenced by shared and unique environment.
We were unable to detect any environmental effect on lateral
ventricular volume. Reveley et al. (1982), Pfefferbaum et al. (2000)
and Styner et al. (2005) showed that ventricular volume is genetically
influenced, and others (Baaré et al., 2001; Wright et al., 2002) found
that ventricular volumes are equally influenced by genetics (58%) and
environment (42%). Inspection of our data revealed that the ven-
tricular volume correlation for DZ twins was relatively low. Choosing
the ADE model rather than the ACE helped to explain these findings:
the genetics effect on ventricles before and after scaling was shown to
be dominant more than additive, leading to a correlation in MZ that is
more than double the correlation in DZ twins.
Besides, generally speaking the more genetically influenced traits
were also the more variable phenotypes in the sample.

Genetics and the developmental sequence

The extent to which different brain structures are genetically
influenced is likely to vary spatially across the brain. One plausible
developmental hypothesis, based on the developmental sequence
during childhood, is that the earliest-maturing brain regions have
structural volumes that are more genetically influenced. Environ-
mental influences may be greater for the later-developing brain
regions (e.g., the frontal lobes). As we found in our cortical mapping
study of brain development from childhood to early adulthood,
(Gogtay et al., 2004), brain regions that mature first in childhood tend
to support more basic cognitive processes, such as movement (motor
and primary sensory cortices), taste (insula), vision (occipital lobes),
and hearing (anterior temporal lobes). The regions with the most
protracted maturational time-course include the prefrontal lobes
(involved in complex reasoning), temporal lobes and hippocampus
(Gogtay et al., 2004). White matter continues to mature throughout
life (Bartzokis et al., 2008), but most of the white matter myelination
that affects regional brain volumes is completed by adolescence, with
heavy myelination of the corticospinal tracts and occipital lobes
occurring in early infancy (Aubert-Broche et al., 2008). This develop-
mental sequence may relate to the profile of genetic influences on
brain structure; our initial data are consistent with the hypothesis that
structures subserving basic processes may be under stronger genetic
control than those that mature over a more extended period.

TBM: advantages and limitations

Prior research has found that key measures of cognitive per-
formance, such as IQ, are highly heritable and correlate with frontal
lobe gray and white matter volumes (Peper et al., 2007). Here we
found moderate genetic influences on frontal lobe volumes, in the
range 30–40% before scaling; values that are comparable with, but
not quite as high as prior studies. The method used to measure
structures is likely to affect the values for the genetic variance
components, because all methods are likely to vary in their
measurement error variance, which is part of the e2 component of
variance, and all variance components are by definition proportions
of the overall variance and sum to one. For more specific analysis of
cortical gray matter variable specialized processing methods may be
used to analyze the cortical surface (see Thompson et al. (2004) for a
review), as in our prior genetic studies (Thompson et al., 2001) and
in the cortical surface modeling studies by Schmitt et al. (2008).
Although these analyses are more time consuming to perform, a
precise estimate of cortical thickness or gray matter density (and
other features such as cortical curvature and complexity) can be
derived for each subject. In particular, registration methods devel-
oped for more precise cortical pattern matching (e.g., Thompson et al.
(2004)) can be used to integrate and compare data from subjects
whose gyral patterns are different, by fluidly transforming entire
networks of gyral landmarks into correspondence. Registration error
is reduced, and measurement precision is increased. In general, one
would expect the genetic and common environmental components
to be higher, as a proportion of the overall variance for methods that
further reduce the measurement error variance, even if these
methods are more labor-intensive to perform. As such, heritability
estimates may be slightly lower for high-throughput voxel-based
methods such as TBM or VBM (Hulshoff Pol et al., 2006a) than for
methods that explicitly model and register cortical anatomy
(Thompson et al., 2001; Schmitt et al., 2008). As twin studies begin
to routinely assess hundreds or even thousands of subjects, there will
ultimately be a trade-off between methods that are most efficient to
use on large cohorts versus those that offer the greatest power to
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detect gene effects per subject analyzed, given the resources avail-
able. A related problem pertains to the subcortical structures as
registration accuracy could potentially be influenced by the degree of
spatial regularization involved in the warping approach. A highly
regularized method, in which the deformation fields are extremely
smooth, may increase the genetic proportion of variance (a2) locally
if a2 was high for global measures. This issue can be further inves-
tigated in the future by studying how the genetic effects on brain
structures depend on the smoothness and accuracy of the registra-
tion vector fields. In the future, we plan to further examine genetic
influences on cortical gray matter differences using surface-based
cortical thickness maps (Thompson et al., 2004), which will take
advantage of the cortical features and explicit surface models to allow
higher order spatial normalization and matching of cortical anatomy.

A second more conceptual issue relates to the disentanglement of
genetic effects on overall brain volume from regional heritability
estimates. In imaging studies designed to identify genes that regulate
overall brain volume, there may be no need to adjust the heritability
maps for global volume effects, as potentially important genetic
effects would be discounted. In the future, however, there will be a
growing interest in genes that regulate specific functional systems and
not others, or distributed cortical networks that operate as a
functional unit. A first step towards understanding regionally-specific
genetic influences has been pioneered by Wright et al. (2002) and
Schmitt et al. (2007), who proposed a multivariate spatial decom-
position of the genetic variance in a dataset. These methods hold
promise for identifying genetic effects that affect the development of
an entire system, or overlapping sets of genes involved in the
maturation of different brain regions. These methods often require
very large cohorts to rigorously establish these subtle, second-order
effects on heritability. These include the examination of differential
heritability between different measures or different regions and the
detection of common versus specific genetic influences on different
measures, which will be a key target of future studies.

Third, there may be age effects on heritability, which means that
any study of a specific cohort must be interpreted as applying to the
age range specifically examined (here, early adulthood). In Lenroot et
al. (2007), who studied children, the authors argued that there is an
age-related difference in the heritability of cortical thickness. The
primary sensory and motor cortices were found to be predominantly
determined by genes in childhood, while later-developing regions,
such as the dorsolateral prefrontal cortex and the temporal lobes may
experience greater genetic influence later in life.

Lenroot et al. (2009) suggested that brain regions related to higher
cognitive functions may have morphometric variance that is more
heritable in adolescence than childhood, as that is when they aremost
rapidly developing. Gene–environment interaction effects may also
complicate and further enhance this increase in heritability during the
most rapid period of development. As such, longitudinal studies will
be needed on large datasets (Wright et al., 2001) to account for age
effects, or even temporary effects on heritability that may occur
during an active growth spurt and may not persist later when growth
rates are lower and population variance is lower (Giedd et al., 2007).

An additional fruitful direction involves the genetics of diffusion
tensor imaging (DTI). Hulshoff Pol et al. (2006a) showed that the
cross-sectional area and fiber integrity (fractional anisotropy) of the
corpus callosum was mostly determined by genes, a finding that has
been verified at different ages across the human lifespan. More recent
bivariate genetic modeling studies using high-angular resolution
diffusion imaging (HARDI) in twins suggest that DTI-derived mea-
sures of fiber architecture and IQ may be both highly heritable and
influenced by overlapping sets of genes (Chiang et al., 2008; Lee et al.,
2009). Future studies combining DTI, functional, and cognitive
measurements with neuroanatomy (Glahn et al., 2007b) are needed
to better establish links between genetics, functional MRI signals and
cognition (see Blokland et al. (2008) and De Zubicaray et al. (2008)).
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