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Figure 17.10: Corpus callosum in Alzheimer’s disease. Midsagittal corpus callosum bound-

aries were averaged from patients with Alzheimer’s disease and from elderly controls

matched for age, educational level, gender, and handedness. The average representa-

tions show a focal shape inflection in the Alzheimer’s patients relative to normal elderly

subjects of the same age. A statistically significant tissue loss is also found at the isthmus

(2nd sector, when the structure is partitioned into fifths). The isthmus connects regions of

temporo-parietal cortex that exhibit early neuronal loss and perfusion deficits in AD [28,29].
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Figure 17.11: Corpus callosum in schizophrenia. (Data from [47]). Midsagittal corpus

callosum boundaries were averaged from 25 patients with chronic schizophrenia (DSM-III-

R criteria; 15 males, 10 females; age: 31.1
�

5.6 yrs.) and from 28 control subjects matched

for age (30.5
�

8.7 yrs.), gender (15 males, 13 females), and handedness (1 left-handed

subject per group). Profiles of anatomic variability around the group averages are also

shown (in color) as an r.m.s. deviation from the mean. Anatomical averaging reveals a

pronounced and significant bowing effect in the schizophrenic patients relative to normal

controls. Male patients show a significant increase in curvature for superior and inferior

callosal boundaries (��� 0.001), with a highly significant Sex by Diagnosis interaction (���

0.004). The sample was stratified by Sex and Diagnosis and separate group averages show

that the disease induces less bowing in females (panel 1) than in males (panel 2). While

gender differences are not apparent in controls (panel 3), a clear gender difference is seen in

the schizophrenic patients (panel 4). Abnormalities localized in a disease-specific atlas can

therefore be analyzed to reveal interactions between disease and demographic parameters.

(For a color version of this Figure see Plate 33 in the color section of this book.)
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underestimated unless elements of the gyral pattern are matched from one sub-
ject to another. This matching is also required for cortical averaging; otherwise,
corresponding gyral features will not be averaged together. Transformations can
therefore be developed that match large networks of gyral and sulcal features with
their counterparts in the target brain [18–20, 26, 136, 137]. Differences in cortical
organization prevent exact gyrus-by-gyrus matching of one cortex with another.
In one approach [25, 26], 38 elements of the gyral pattern are matched, including
the major features that are consistent in their incidence and topology across sub-
jects [25, 26, 41, 42, 115, 138, 139].

To find good matches among cortical regions, the matching process can be
performed in the cortical surface’s parametric space, which permits more tractable
mathematics (Figs. 17.12, 17.13). This vector flow field in the parametric space
indirectly specifies a correspondence field in 3D, which drives one cortical surface
into the shape of another. This mapping not only matches overall cortical geometry,
but matches the entire network of the 38 landmark curves with their counterparts in
the target brain, and thus is a valid encoding of cortical variation.

17.7.2 Spherical, planar maps of cortex

Several simpler maps of the cortex are made to help calculate the transforma-
tion. Cortical models are often created by deforming a spherical mesh into the
shape of the cortex [18, 19, 140]. Any point on the cortex then maps to exactly
one point on the sphere, and a spherical map of the cortex can be made which
indexes sulcal landmarks in the normally folded brain surface. These spherical lo-
cations, indexed by two parameters, can also be mapped to a plane (Figs. 17.12,
17.13). A flow field is then calculated that elastically warps one flat map onto the
other (or equivalently, one spherical map to the other). On the sphere, the param-
eter shift function � � � � ������� is given by the solution � � � � � � � : ��� � � to
a curve-driven warp in the spherical parametric space � � - � � �  �  - � �  � of the
cortex [25, 26, 141]. For points � � � �!� � � in the parameter space, a system of
simultaneous partial differential equations can be written for the flow field ��� � � :
�
� � � � � � � � �): ��� � ������� ��� � � � � + =  � � � � � � � � � � ����� � �	����
�� % �

(17.23)

Here
��

,
� � are sets of points and (sulcal or gyral) curves where displacement

vectors ��� � ��� � � � � � matching corresponding anatomy across subjects are known.
The flow behavior is modeled using equations derived from continuum mechanics,
and these equations are governed by the Cauchy-Navier differential operator � =
� 	 � � ��� � ��� 	 � 	 � � with body force

�
[20,23,28,29,80,81]. The only difference

is that � � is the $ � � � � = � �  form of the differential operator � , for reasons explained
next.


