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We describe an automated 3-D segmentation system for in vivo brain

magnetic resonance images (MRI). Our segmentation method combines

a variety of filtering, segmentation, and registration techniques and

makes maximum use of the available a priori biomedical expertise,

both in an implicit and an explicit form.

We approach the issue of boundary finding as a process of fitting a group

of deformable templates (simplex mesh surfaces) to the contours of the

target structures. These templates evolve in parallel, supervised by a

series of rules derived from analyzing the template’s dynamics and from

medical experience. The templates are also constrained by knowledge on

the expected textural and shape properties of the target structures.

We apply our system to segment four brain structures (corpus

callosum, ventricles, hippocampus, and caudate nuclei) and discuss

its robustness to imaging characteristics and acquisition noise.

D 2004 Elsevier Inc. All rights reserved.

Keywords: Magnetic resonance images; Simplex mesh surfaces; 3-D

segmentation system

Introduction

The rapid development of imaging technologies (Ayache, 2003)

now routinely allows living organs and organisms to be explored

noninvasively. One of the least accessible and most complex organs,

the human brain, is a primary beneficiary of these new medical

imaging techniques. Its complexity is expressed at a variety of

scales. At the microscopic level, neurons, glial cells, and fibers form

the support tissue for cerebral communication. At a more macro-

scopic level, the brain can be partitioned into several regions (e.g.,

brainstem, cerebellum, diencephalon, and cerebrum) which are

associated with high-level mechanisms such as sensation, motor

control, or affect and cognition. Within these regions, we distinguish

substructures (e.g., the amygdala, hippocampus, basal ganglia, etc.)

in view of whose functional importance the development of precise

segmentation and labeling methods has become a major objective of

76
77
78
79
80

1053-8119/$ - see front matter D 2004 Elsevier Inc. All rights reserved.

doi:10.1016/j.neuroimage.2004.07.040

* Corresponding author. Mirada Solutions, Ltd., Level 1, 23–28 Hythe

Bridge Street, Oxford OX1 2ET, UK. Fax: +44 1865 265501.

E-mail address: apitiot@loni.ucla.edu (A. Pitiot).

Available online on ScienceDirect (www.sciencedirect.com.)
ED P
RO

neuroinformatics. The need, shared across many levels of descrip-

tion, for such correlation between brain structure and function is

exemplified by the broad range of studies that have analyzed cortical

structures: in particular, diseases such as schizophrenia (Narr et al.,

2000), through development (Thompson et al., 2003), etc.

Although qualitative image analysis is often sufficient for

diagnosis of disease, quantitative analysis, for which segmentation

is a pivotal first step, is necessary for many applications:

longitudinal monitoring of disease progression or remission (Rey

et al., 2002), preoperative evaluation and surgical planning (Holly

and Foley, 2003), radiotherapy treatment planning (O’Sullivan and

Shah, 2003), or statistical analysis of anatomical variability or

deficits (Collins et al., 2003; Thompson et al., 2000).Yet, effective

segmentation is especially challenging, as a structure can present a

wide variety of shapes and appearances.

Automated segmentation of brain structures

In spite of the high variability of brain structures, the

delineation process calls for high precision as the quality of the

analysis generally depends on how accurately the various

structures can be identified. For instance, as argued in (Thompson

et al., 1997), given the corpus callosum’s key role as the primary

cortical projection system, regional analysis of its structure is

important in assessing several neurological disorders (Alzheimer

disease, multi-infarct dementia, dysplasias, etc.). Nonetheless,

subtle variations in shape, relative to a mean callosal delineation,

are observed between and within patient and control groups, and

this makes it difficult to detect and classify abnormal structural

patterns. As a result, intense debate still rages on whether different

callosal regions undergo selective changes in each of these disease

processes and whether these are systematic differences in neuro-

psychiatric disorders such as autism or schizophrenia. These

controversies may be alleviated by precise and reliable segmenta-

tions, applied to large image databases.

Segmentation has traditionally been tackled by human oper-

ators, but the many drawbacks of manual delineation (lack of

reproducibility, strong a priori biases, unavailability of sufficient

resources to handle ever-growing databases of images) advocate

the use of automated methods. However, to reach the desired
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accuracy, many difficulties must be overcome: input images are

noisy, poorly contrasted, and full of bdecoysQ (many structures are

similar in shape and/or in intensity), and the target structures are

variable in shape and intensity, etc.

A plethora of automated segmentation methods have been

proposed in the literature to extract anatomical structures, using an

array of feature descriptors and shape models. The choice of an

adequate segmentation paradigm is central as it conditions the

ability of the segmentation system to extract anatomically mean-

ingful delineations. We favored deformable templates as a basis for

our segmentation system, for the following reasons. First, they can

adequately handle the various discontinuities and irregularities

induced by sampling artifacts or noise along the boundaries of the

target structures. Next, they can compactly describe a wide variety

of shapes while minimizing the overall number of parameters or

masking these behind a small and easily manageable set of

physical principles. They also often provide a local, if not global,

analytical representation of the segmented structure, which

facilitates its subsequent analysis. Finally, a priori knowledge on

the shape, location, or appearance of the target structure can guide

the deformation process. Deformable templates are then the

framework of choice for combining bottom-up constraints [com-

puted from the input magnetic resonance imaging (MRI)] with a

priori top-down medical knowledge.

Model-based segmentation using explicit knowledge

In many deformable template techniques, statistical analysis

helps to introduce a priori knowledge on the shape or appearance

of the target structures.

Most of these approaches fall in the implicit knowledge category:

from a learning set of a priori segmented instances of an anatomical

structure, they must automatically discover the relationships and

functional dependencies of the various model parameters.

However, explicit information about the target structures is often

available, based on anatomical expertise. For instance, the relative

positions and topology of most of the key subcortical gray matter

structures are fairly consistent across individuals, anatomical struc-

tures should not intersect, etc. From these observations, rules can be

derived to better drive the segmentation process. Broadly speaking,

explicit knowledge approaches may be regarded as a special case of

implicit knowledge algorithms where additional biomedical exper-

tise provides short cuts in searching for the target structure.

We submit that the use of this a priori medical expertise in

general, and explicit knowledge in particular, is the key to a robust

and accurate segmentation system.

Reviews of various implicit knowledge deformable template-

oriented techniques can be found in (McInerney and Terzopoulos,

1996) and (Montagnat et al., 2001). Explicit knowledge approaches

are more heterogenous as they usually combine shape and intensity

descriptions in the same framework. Also, explicit information is

often complemented or generalized by implicit information (for

instance, a purely explicit position rule can be made more robust as

a fuzzy condition, which introduces nonexplicit elements: the a

parameter of the cut-off, the amount of diffusion, etc.).

These close interactions between implicit and explicit models

are exemplified in the hierarchical active shape models (ASMs) of

Bernard et al. (2001). Pioneered by Cootes et al. (1994), ASMs

infer new shapes by linearly combining the eigenvectors of the

covariance matrix which captures the variations from the mean

shape. These eigenvectors encode the modes of variation of the
ED P
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shape. The shape parameter space then serves as a means to

enforce limits and constraints on the set of admissible shapes.

Although ASMs can handle disconnected shapes, it is easier to

partition a complex shape (e.g., the vertebral column) into simpler

and more manageable elements (the vertebrae). Noting this,

Bernard et al. devised a two-level hierarchical scheme to model

the shape and topology of the resulting composite representation.

Each individual structure was controlled by its own ASM, subject

to an overall global ASM encoding the relative positions and

orientations of the set of components.

In another type of explicit approach, Amit and Kong (1996)

used a graph of landmarks, automatically chosen from the input

images, as a topological model to guide the registration process of

X-ray images of the hand.

In view of its ability to represent and merge uncertain or

imprecise statements, fuzzy theory also proved a popular choice.

Among others, Chang et al. (2000) developed a fuzzy-controlled

rule-based system to segment MR images of diseased human

brains into physiologically and pathologically meaningful regions

by incorporating expert knowledge on brain structures and lesions.

Barra and Boire (2001) used information fusion to combine

medical expertise with fuzzy maps of morphological, topological,

and tissue composition data to segment anatomical structure in

brain MRIs. Studholme et al. (1996) merged region labeling

information with a classical iconic image registration algorithm via

information fusion to align MR and PET images of the pelvis.

Anatomical atlases are also particularly well suited to model a

priori knowledge. In Csernansky et al. (1998) for instance, fluid

warping of a digital brain template helped study the relationship

between schizophrenia and local changes in hippocampal mor-

phology. The ANIMAL algorithm (Collins et al., 1995) deforms an

MRI scan to match a previously labeled atlas MRI, and the

nonlinear transformation is used to segment it by transferring the

atlas labels on the individual scan.

When anatomic knowledge can be captured by a series of

simple positional, geometric, or intensity rules, expert systems

provide a convenient framework to assist in segmentation tasks.

Ardizzone et al. (2001), for instance, developed a descriptive

language to express the geometric features and spatial relationships

among areas of images. Matesin et al. (2001) also used a rule-based

system to organize and classify features (such as brightness, area,

neighborhood, etc.) for regions that had been automatically

extracted via region growing, and they segmented scalp, gray

and white matter, CSF, and strokes. In Brown et al. (1998), lung

boundaries were segmented in chest X-ray images by matching an

anatomical model to the image edges using parametric features

guided by a series of rules. Li et al. (1995) described a knowledge-

based image interpretation system to segment and label a series of

2-D brain X-ray CT scans. Their model contained both analogical

and propositional knowledge on the brain structures, which helped

interpret the image primitive information produced by different

low-level vision techniques. Finally, Poupon et al. (1998) used 3-D

moment invariants to embed shape distributions in deformable

templates. They devised a framework that could deal with several

simultaneously deforming templates, with a fairly low updating

cost, to segment deep gray nuclei in 3-D MRI.

Composite segmentation system for medical images

We propose an automated segmentation system for in vivo brain

weighted MRI (see Fig. 1). We focused on devising a segmentation
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Fig. 1. Overview of our proposed segmentation system.

Fig. 2. Gouraud rending (gray) of the simplex mesh (black lines) associated

with a model of the lateral ventricles, with a defined bzoneQ (white outline;
see text).
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method that makes maximum use of available a priori anatomic

expertise either in the form of implicit knowledge (the shapes of the

structures, their appearances, . . .) or of explicit information (the

relative distance between structures, nonintersection rules, . . .).
These rules are implemented as constraints on the deformable

templates, thereby incorporating several techniques from the above

taxonomy. To illustrate the promise of our system, we selected a

representative set of structures to segment: the lateral ventricles, the

corpus callosum, the caudate nucleus, and the hippocampus.

We approach the issue of boundary finding as a process of

fitting a series of deformable templates to the contours of the target

structures. The templates are initialized by nonlinear registration of

a hybrid MRI/structure atlas (built a priori) to the input MRI. Each

initialized template is then iteratively modified to minimize a

hybrid local/global energy which incorporates (1) an internal

regularization energy, (2) an external term coupling the models to

the underlying image features, and (3) a global shape-constrained

term. The templates evolve in parallel within a rule-controlled

framework whose purpose is to maximize the achieved match over

each structure while respecting the distance, position, etc.

constraints derived from neuroanatomical knowledge. For each

structure, we also devise, from a learning set of already delineated

instances in MRIs, a specific texture filter (here, we consider

texture to be a function of the spatial variation, or distribution, of

voxel intensities in a given window). This builds in a texture

constraint to bias the evolution of the deformable templates

towards the most texture probable boundaries.

Methods

We detail in this section the components of our segmentation

system and how they interact with each other under the supervision

of segmentation rules.

Deformation model

We chose simplex meshes (Delingette, 1999) to model the

templates. They are discrete model representations (sets of

vertices and edges) with prescribed vertex connectivity. Similar

to triangular meshes (of which they are the duals), simplex

meshes can represent surfaces of all topologies. To encode the

surfaces of structures, we use closed 2-simplex meshes: each
ED P
Rvertex is then connected to exactly three neighbors. This inherent

topological simplicity makes it easier to impose constraints

(internal and external) to guide the segmentation process. Finally,

bzonesQ (subsets of vertices with their associated edges) can be

defined on the simplex meshes to specify additional constraints

(see Fig. 2).

Let Pj =fPi
jaR

3gNj

i¼ 1 be such the mesh (a set of Nj points with

constant connectivity matrix as we do not allow topological

changes) associated with structure j (e.g., j = 0 for corpus
callosum, j = 1 for caudate nucleus, etc.). We define the input

MR image I by its intensity at each point. The algorithm’s goal is

then to find in I a pictorial object whose overall boundary fits that

of Pj. To guide the deformation and drive the template towards the

required object shape, we introduce a compound energy functional

EI whose minimum we aim to determine. Classically, EI is made

up of three terms:

! an internal (or regularization) energy Einternal which character-

izes the possible deformations of the template,

! an image coupling energy Eimage which couples the template to

the image, and

! a constraint energy Econstraint which incorporates the various

constraints (shape, texture, etc.).



ARTICLE IN PRESS

260261

262263

264
265

266267

268

269

270

271
272
273
274
275
276
277
278
279
280
281
282
283
284

285

286
287

288
289
290
291
292
293
294

A. Pitiot et al. / NeuroImage xx (2004) xxx–xxx4
EI is then written:

EI ¼ a:Einternal þ b:Eimage þ c:Econstraint ð1Þ

with a, b, c a R:
Within a Newtonian framework, we get the following iterative

point updating procedure:
T
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jtþ 1
j ¼ jt

j þ 1� dð Þ jt
j �jt� 1

j

� �
þ a:finternal jt

j

� �

þ b:fimage jt
j

�
þ c:fconstraint jt

j ; jt
k

� �
k p j

�
ð2Þ

��

where t denotes the iteration step, {Pk
t}k p j is the set of all

structure meshes with the exception of Pj, d a R is a damping

coefficient and the fi’s are body forces applied to displace the mesh

vertices at each iteration.

A number of image-based forces are available in the literature

(Montagnat et al., 2001). They may be based on the gradient of the

input image, on a smoothed version of its associated edge-image,

on intensity profiles, etc. Here, we use a force that depends on the

distance to the closest strong gradient in the underlying image, as

this exhibits a good trade-off between precision and robustness

(Delingette, 1999): fimage is then proportional to the distance to the

strongest gradient along the direction of the associated normal to

the simplex mesh, within a given exploration range, which depends

on the expected distance between the point in the mesh and its final

position in the target structure.

We implement an internal regularization by averaging the

curvature of simplex vertices over a spherical neighborhood (which

effectively modifies the position of these vertices).

Initialization

Once we have reduced the segmentation problem to an

energy minimization task, we face a multimodal, nonlinear, and
UNCOR

Fig. 3. (a) reference MRI with manually delineated structures superimposed (corp

yellow); (b) reference in MRI registered to an input MRI registered to an input MR

this figure legend, the reader is referred to the web version of this article.)
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possibly discontinuous function of many variables. As the

solution space is large and nonconvex, most minimization

techniques would only lead to weak suboptimal solutions (where

the deformation model adapts to noise or decoys or maybe only

follows parts of the desired boundaries) if the search space were

not drastically reduced by assuming that a good approximation

to the solution was available. This may be either in the form of a

set of pose parameters (position, orientation, scale) or shape

descriptors.

Various approaches have been presented in the literature to

overcome this robustness issue. In Blake and Zisserman (1987), for

instance, a coarse to fine strategy, the Graduated Non-Convexity

Algorithm, is implemented, where a scalar parameter controls the

amount of blocalQ convexity in the model. Alternatively, the

templates may be initialized at several locations and evolved in

sequence: the deformed template with the best final match is then

selected. In Pitiot et al. (2002b), a hybrid evolutionary algorithm

controls a family of deformable templates that are evolved

simultaneously and explore the search space robustly. Here, we

use nonlinear registration to initialize the templates relatively close

to their expected positions.

An MRI brain data set was selected for its bstandardQ
appearance (the reference MRI), and in it, we carefully

segmented the target structures (see Fig. 3a) following anatomical

delineation protocols (Pitiot (2003)—Appendix B). Given an

input MRI to be processed, we register the reference MRI to it

first with a robust affine block-matching registration method (the

bbaladinQ algorithm (Ourselin et al., 2001)) and second with a

nonlinear registration algorithm with an elastic prior (the PASHA

algorithm (Cachier et al., 2003)). The obtained transform is then

applied to the meshes segmented in the reference MRI. Those

transformed meshes serve as initial guesses for the segmentation

of the target structures (Fig. 3b). Note that the PASHA

regularization parameters were set so as to yield a particularly

smooth transformation and prevent local sign changes of the

Jacobian as these could cause the transformed meshes to self-

intersect.
us callosum in red, ventricles in white, caudate in green and hippocampi in

I and initialized structures. (For interpretation of the references to colour in
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We found that the nonlinear registration of an average

intensity atlas (Collins et al., 2003) (the average of several MRIs

linearly or nonlinearly registered to themselves) used as reference

MRI yielded inferior results since some of the strong features

used by the PASHA algorithm (edges, ridges, . . .) were not as

clearly defined in the average atlas than in the bstandard-lookingQ
MRI.

Also, even though the affine registration of the reference MRI

gave good initializations, better results were achieved with a

nonlinear algorithm, especially when the MRI to be segmented was

substantially different from the reference MRI: in this case, a

global affine transformation was less effective in aligning the

internal structures.

Knowledge-based constraints

The evolution of our deformable templates is guided by several

constraints (energy terms and rules) towards shapes that are more

probable with respect to the a priori anatomical knowledge we

gathered on the target structures.

Statistical shape constraints

Even though a given structure can present a wide variety of

forms, the notion of biological shape seems reasonably well

explained by a statistical description over a large population of

instances. Consequently, statistical approaches have attracted

considerable attention (Cootes et al., 1994; Turk and Pentland,

1991; Staib and Duncan, 1992). A deformable template is then

constrained not only by the number of degrees of freedom imposed

by its geometric representation, but also in that it must be a valid

instance of the shape model. Most of these approaches however

require that correspondences between shapes be available a priori.

We consequently reparameterize the meshes to form the shape

learning set following Fleuté’s methodology (Fleuté et al., 1999)

which minimizes the distance between one of the input shapes and

a second one registered with it (this assumes smooth transition

paths in between them). Namely, the simplex mesh associated to

the most average looking instance of each target structure is

deformed (following the core deformation process described

above, without external constraints) onto the other ones and the

final deformed meshes then serve as reparameterizations.

Given a set S = {S1,. . .,SN} of N reparameterized instances of a

target structure (the a priori learning set), we first align the

structure’s instances into a common coordinate frame with an

iterative closest point algorithm. The eigenvectors of the cova-

riance matrix of the positions of the structure’s vertices then

describe the modes of variation, and the vectors corresponding to

the largest eigenvalues describe the most significant ones.

A statistical shape model is then available for each target

structure. The deformable templates must then be constrained

accordingly. In Cootes et al. (1998), the pose and shape parameters

of the templates are adjusted by projecting the local deformation

induced by the external energy onto the shape space. Let dPimage
t =

fimage(Pj
t) � Pj

t be the deformation induced by the image coupling

forces. Let S̄ be the mean shape computed for the target structure,

and Q = { q1,. . .,qm} its m first eigenmodes. The shape-con-

strained deformation is written:

djt
shape ¼

Xm
i¼ 1

hjt
j þ djt

image � S̄; qii:qi
ED P
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This however limits the range of possible shapes to be the

projections onto the shape space. Alternatively, hybrid deformation

models can be crafted where the shape constraints bias the

deformation process, but less restrictively. We chose to adapt

Montagnat’s hybrid local/global scheme (Montagnat and Delin-

gette, 1998). Deformations are then regularized by combining

global (shape-constrained) and local (external) forces.

The point updating rule becomes:

jtþ 1
j ¼ jt

j þ 1� dð Þ jt
j �jt� 1

j

� �
þ k a:finternal jt

j

� �n

þ b: fimage jt
j

�
þ c:fconstraint jt

j ; jt
k

�
k

n �� o
þ 1� kð Þ djt

shape

on�
ð3Þ

where k is the blocalityQ parameter, which controls the contribution

of the global shape-model constraint.

Distance constraints

The positions (and shapes) of nearby anatomical structures are

not independent of each other. For instance, the caudate nuclei are

juxtaposed to the lateral ventricles, so any change in the shape or

position of one will affect those of the other. Information about the

respective positions of structures can then help the segmentation

process.

In Barra and Boire (2001), fuzzy logic was used to express

distance and positional relationships between structures. In Tsai et

al. (2003), a series of parametric models, built via principal

component analysis of multiple signed distance functions, enabled

the concurrent segmentation of anatomical structures, via mini-

mization of a mutual information criterion. Interobject distance

constraints were also used in Yang et al. (2003), where a maximum

a posteriori estimator for anatomical shapes helped constrain the

evolution of level set functions. We too chose distance maps here

as they can model distance constraints with good precision and

robustness (to guarantee nonintersection, for instance). Given a

deformable template P0
t, we wish to impose on it a distance

constraint with respect to template P1
t. We first compute the

distance map D1
t associated with a discrete sampling of P1

t. We use

a classical Chamfer map (Borgefors, 1984) algorithm to compute a

signed distance map, positive outside the discrete sampling of P1
t

and negative inside. At each vertex P0,i
t of P0

t , we then compute a

bdistance forceQ f1 magnitude depends on the value of the distance

map at the considered vertex.

Two types of constraints can be, and were, applied:

! We can cause the force to attract the vertex, along the direction

of the gradient of the distance map, up to an exact distance

dtarget of the target mesh:

fdistance Pt
0;i

� �
¼ �

qDt
1 Pt

0;i

� �

jjqDt
1 Pt

0;i

� �
jj
: Dt

1 Pt
0;i

� �
� dtargetÞ ð4Þ

�

! Alternatively, we may want to only enforce that this vertex

should remain at distance inferior or superior to dtarget (to

prevent intersections between structures for instance).

We get:

if Dt
1 Pt

0;i

� �
b dtarget then fdistance Pt

0;i

� �
¼

þ
qDt

1 Pt
0;i

� �

jjqDt
1 Pt

0;i

� �
jj
: Dt

1 Pt
0;i

� �
� dtarget

� �
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else

fdistance Pt
0;i

� �
¼ 0

to ensure a minimum distance (dtarget = 0 for nonpenetration).

Note that this constraint does not guarantee non-interpenetra-

tion, it only favors it, which works adequately in our case. Should

another application require absolute non-interpenetration, the norm

of the gradient in the above formulation could be multiplied by

||D1
t(P0,i

t) + q||, which would yield an arbitrarily large force at

contact.

Also these forces can also be applied to a subset of the mesh

vertices (so-called zones; Fig. 2) to enforce more local constraints.

Texture constraints

Cerebral structures are not all equally well-defined in brain

MRI. The corpus callosum for instance is remarkably smooth

and contrasted in the midsagittal section of a typical T1-

weighted MRI. Its mean intensity is clearly higher than that of

most of the immediately surrounding tissues. Similarly, the

intensity distribution of the lateral ventricles clearly distinguishes

them from nearby structures (the caudate nucleus for instance).

However, the borders of the hippocampus are significantly

harder to outline in some areas. Furthermore, these structures are

often surrounded by decoy elements with similar intensity

distributions.

Finally, noise, partial volume effects and bias fields also impair

the quality of the input images. Yet, the segmentation process relies

on the minimization of an objective function to drive the templates

towards the strongest edges of the input image, which should then

correspond to those of the target structure. Unfortunately, these

various difficulties jointly contribute to a poor edge map, which

might impair the deformation. Interaction with neuroscientists

prompted us to consider texture as a discriminating element for the

target structures.
UNCOR

Fig. 4. Neutral classification of corpus callosum, caudate nucleus and hippocamp

true outlines superimposed.
ED P
ROOF

We therefore developed a series of texture filtering approaches

to produce classification maps from the input MR data.

From a large pool of texture descriptors (Haralick descriptors

computed from co-occurrence matrices, fractal measures, dyadic

Gabor filters, etc.), a specialized feature selection algorithm first

discards the least pertinent descriptors, for each target structure.

This selection step is performed a priori, once and for all. The

selected descriptors can then be classified. Three types of clas-

sifiers were investigated: linear (linear discriminant analysis),

linear in a nonlinear projective space (support vector machines),

and adaptive nonlinear (neural networks), with an increase both in

performance and in the computing resources required (see Pitiot,

2003; Pitiot et al., 2002a for details). A priori information on the

classification task is introduced in the form of a learning set of a

priori segmented target structures.

For efficiency, a region of interest (ROI) is also identified a

priori around each target structure in the bstandard-lookingQ MRI

that serves to initialize the deformable templates. Given a new MRI

to segment, the texture filters are applied only inside the ROIs

convected by the nonlinear transformation obtained with the

PASHA algorithm by registering the standard reference MRI to

the one to be segmented: this decreases the learning and processing

times, and enhances the performance of the classifier as fewer

decoy structures (similar-looking off-target tissues) must be

discarded. As it performed best in practice, we selected the

nonlinear classifier to extract the target voxels.

Fig. 4 displays a few classification results for 3 structures out

of the 16 test corpora callosa, 20 caudate nuclei, and 20

hippocampi available. The use of a highly specialized neural

network helped design a better classifier, owing to the ability of

neural approaches to adapt the structure of the decision boundary

in the search space to the classification problem as they search

for the best fitting parameters (most especially due to a dynamic

learning set). Note however that a set of target voxels adequate

for our application can be obtained with straightforward linear

discriminant analysis. The technicalities behind the nonlinear
us: (a) input T1-weighted 1 mm3 MRI; (b) neutral extracted structures with
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approach only contribute to the final few percentage points in

performance.

A distance map scheme similar to that established for distance

constraints then serves to build texture constraints from the texture

classification maps produced by these classifiers. Namely, we

compute the distance map Di
t of the thresholded classification map

associated with each target structure and derive a btexture forceQ
ftexture as follows:

8jt
j; 8Pt

j;i; ftexture Pt
j;i

� �
¼ �

qDt
j Pt

j;i

� �

jjqDt
j Pt

j;i

� �
jj
:Dt

j Pt
0;i

� �
ð5Þ

Since the texture maps are computed only inside regions of

interest, the texture forces are also only available there.

Rule-controlled framework

In view of the complexity of the segmentation task, choosing a

value for the various scalar parameters that control the contribu-

tions of the constraints and regularization energies is not trivial.

Instead of setting a priori suboptimal values, these parameters

could evolve dynamically along with the deformation process.

Additionally, rather than segmenting the structures independently

and running the risk of them intersecting one another, better

segmentation results could be obtained by evolving the templates

in parallel while controlling their interrelationships.

We therefore built a catalog of rules to control the dynamic

properties of our deformable templates. For each target structure or

pair of structures, a set of rules was developed that took into

account recommendations from clinicians as well as low-level

image observations.

Lateral ventricles. As the ventricles are fairly highly contrasted

relative to the immediately surrounding tissues in T1-weighted

MRIs, the nonrigid transformation obtained via registration of the

reference MRI to the input MRI usually gives an excellent estimate

of the true boundaries. The texture filter also delivers excellent

maps and we set ctexture = 0.6. With that in mind, and in view of the

large variability of the ventricles, no shape constraint was used for

their segmentation (Table 1 confirms that adding a shape constraint

actually decreases the segmentation performance). For the same
UNC
Table 1

Performance of our segmentation system over the target structures for a set of 20

System Distance (mm) Corpus

callosum

Basic framework Mean 95% sym 1.3

2.2

With shape constraint Mean 95% sym 1.4

2.4

With distance constraint Mean 95% sym 1.2

2.2

With texture constraint Mean 95% sym 0.2

0.4

With shape and distance Mean 95% sym 1.3

2.2

With all constraints Mean 95% sym 0.2

0.4

With feedback rule Mean 95% sym 0.2

0.4
ED P
ROOF

reason, only a small internal regularization energy was used. d =

0.1, a = 0.1, k = 1.0, cdistance = 0.0, ctexture = 0.6, b = 0.3.

Caudate nucleus. With the exception of the caudate tail, which the

delineation protocol discards (see Pitiot (2003)—Appendix B for

details), the caudate nuclei from our training set did not exhibit

much variability. We consequently used a moderately high shape

weight: k = 0.3. To prevent intersections with the lateral ventricles,

a distance constraint was added. We define on each caudate simplex

mesh (left and right) a zone corresponding to the contact area with

the adjacent lateral ventricle. A distance constraint with dtarget =

1 mm ensures a good juxtaposition and prevents interpenetrations.

d = 0.1, a = 0.1, k = 0.3, cdistance = 0.3, ctexture = 0.3, b = 0.3.

Corpus callosum. A fairly variable structure (at least based on the

analysis of the 20 callosal instances in our training set), we did not

use any shape constraint for the corpus callosum (here also, Table 1

supports this choice). A distance constraint with dtarget = 2 mm

ensures the nonintersection with the lateral ventricles (a 0-mm

distance constraint would not prevent intersection since, as

mentioned above, our distance constraints act as biases for the

deformation process rather than as actual absolute constraints). d =

0.1, a = 0.1, k = 1.0, cdistance = 0.2, ctexture = 0.6, b = 0.1.

Hippocampus. The hippocampus shows poor contrast relative to its

neighboring structures, so the use of a shape constraint proved

necessary (k = 0.3) to interpolate the missing information. Since

the performance of the texture classifier was not particularly high,

we gave the texture constraint a moderate weight. d = 0.1, a = 0.1,

k = 0.3, cdistance = 0.0, ctexture = 0.6, b = 0.6.

Parameter dynamics

! A pyramidal decomposition of the gradient image (series of

increasingly downsampled gradient images) was used to

compute the external forces. This guaranteed deformation at

early stages and later ensured a precise delineation (dynamic

coarse-to-fine approach): the standard deviation of the 3-D

Gaussian used to compute the gradient of I was initialized at 3.0

mm and decreased by 0.2 every 10 iterations.

! The locality parameter k was slowly increased by 0.02 every 10

iterations as the deforming templates approach the borders of
T1-weighted 1 mm3 resolution MRIs

Ventricles Caudate

nucleus

Hippocampus

4.4 4.2 3.5

5.4 4.7 8.2

4.8 3.9 3.2

5.5 5.5 7.8

4.3 3.8 N/A

5.1 4.2 N/A

2.2 2.1 2.5

3.3 3.0 3.5

3.5 2.2 N/A

4.7 4.9 N/A

1.9 1.8 2.3

2.8 2.3 3.5

1.8 1.6 2.1

2.6 2.0 3.0
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their target structures to allow them to better adapt to these

borders (for structures with shape constraints).

Leak prevention. While classical rules control the behavior of the

deformable templates, feedback rules control the applicability of

the rules themselves to ensure that no mistake is being made during

the deformation process. As such, they may be considered as

metarules. To ensure that the deformable templates do not bleakQ
outside of the correct boundaries, we checked at each iteration that

their distances (mean distances averaged over all vertices) to their

associated shape-constrained projections stayed reasonable. We

defined four structure-dependent thresholds: 3 mm for the corpus

callosum, 4 mm for the caudate nucleus, 4 mm for the ventricles,

and 5 mm for the hippocampus. These were based on the computed

variability of each structure. Each time the threshold was reached,

we increased the amount of regularization (a was increased by 0.2)

and the shape constraint if used (k was decreased by 0.1). As the

deformation process went along, the structure-dependent thresh-

olds were increased to allow for finer-scale deformations.

Results

Here, we present some qualitative and quantitative segmenta-

tion results for the four selected target structures.

Delineation protocol

For each structure, a delineation protocol (see Pitiot (2003)—

Appendix B) was devised by expert neuroscientists and used to

build the training set of 20 manual delineations which served as

ground truth (those were traced in 3-D on twenty 256 � 256 � 124

1 mm3 resolution SPGR T1-weighted MRIs of a group of normal

elderly subjects). One should however keep in mind that protocols

are always designed towards a specific a priori goal: for instance,

comparing diseased and normal individuals, or the longitudinal

study of a pathology, etc. They also have to ensure that the

delineations can be carried out with reasonable accuracy by trained

operators. This may at times require that the least visible parts of a

structure be discarded (lest the manual delineation should introduce

spurious edges and yield artificially high variability). Conse-

quently, the manual delineations from the training sets, which we

consider our gold-standard, may not always conform to standard

anatomical expectations about the shape of the target structures (for

instance, our gold-standard caudate nuclei have a very short tail,

and the inferior horns of the ventricles are missing, see Fig. 6).

We then have to take these delineation protocols into account

when computing the segmentation errors. For each target structure,

we devised a semi-automated means (which often relied on semi-

automated masking) to correct the computation of the misclassified

voxels. Namely, for each structure, its associated manual delin-

eation protocol was applied to the output of the automated

algorithm to discard from the error computation voxels outside

of the range defined by the protocol.

This correction step, although necessary, unfortunately intro-

duces artificial imprecisions. One should therefore consider the

segmentation results with caution. In particular, it seems wise to

nuance the performances of an algorithm by taking the measured

variability of the delineating human operators into account (Zou et

al., 2002) described a means to compare the results of automated

algorithms with those of experts when the latter exhibit substantial

variability).
ED P
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A few segmented target structures

Fig. 5 displays a few 3-D renderings of the target structures

segmented with our system, along with the associated 2-D

synchronized views, for a previously unseen T1-weighted MRI,

with imaging characteristics similar to those in the learning set.

Fig. 5a illustrates the successful delineation of all four

structures with the complete segmentation system (using all

applicable constraints and rules). As explained earlier, the overall

shapes of the targets might look different from standard anatomical

expectations. However, those outlines conform with the established

delineation protocols for our study and are thus considered

satisfactory.

The relevance of the distance constraint is demonstrated in Fig.

5b: the lateral ventricles, caudate nuclei, and corpora callosa of the

same MRI were segmented by our system without nonpenetration

distance constraints (for the corpus callosum, ventricle, and

caudate nucleus). As expected, these structures intersect.

In Fig. 5c, no shape constraints were used to segment the

structures from the same MRI. Not surprisingly, comparison with

Fig. 5a confirms the usefulness of shape models for controlling the

deformation of templates when little or spurious intensity

information is available: hippocampal segmentation greatly suf-

fered from this lack of a priori shape knowledge (we even observed

changes in topology). Conversely, in the absence of a shape

constraint, we obtained, on the same MRI, a segmentation of the

caudate nuclei which better agreed with anatomical expectation, in

that they both presented longer tails (which were still within the

guidelines of the delineation protocol).

Segmentation accuracy

The accuracy of our segmentation system was evaluated

following the methodology presented in (Gerig et al., 2001). We

used as error metrics the partial Hausdorff distance (defined below)

and the mean absolute surface distance. We favored this error

methodology over the computation of the false positive and false

negative voxel ratios as it better illustrates the global behavior of the

segmentation system (Gerig et al., 2001). In particular, it is less

sensitive to small delineation errors As argued above, all segmenta-

tions were adjusted to take into account the delineation protocols

(Fig. 6).

Given a deformed simplex mesh Cj
t, its Hausdorff distance to a

gold standard segmentation GSj (represented by a set of 3-D

voxels) is the largest distance between them both, computed in an

asymmetric way, as the maximum (over all voxels v of a

discretized version of Cj
t) of the minimum Euclidean distance

between v and its closest voxel w on GSj:

Hasym jt
j; GSj

� �
¼ max

vajt
j

min
waGSj

deuclidean v;wð Þ
�	

ð6Þ

This distance can be symmetrized by taking the maximum of

both asymmetric measures. Finally, in view of its high sensitivity

to outliers, we considered the 95% quantile of the symmetric

Hausdorff distance. For efficiency reasons, we evaluated it by

integrating the values of the Euclidean distance map of one surface

along the contour of the other one, as described in (Gerig et al.,

2001). A similar strategy allows a symmetric mean absolute

distance to be computed between the deformed template and its

target gold standard.
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Fig. 5. Segmented target structures (in color) in a typical T1-weighted MRI: (a) with the complete segmentation system (all rules, all constraints); (b) without

distance constraints (white rectangles shows magnified portions of the MRI where templates intersect); (c) without shape constraints (white arrows point to

topological alterations of the hippocampi). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this

article.)
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Table 1 reports both measures for all 4 structures, averaged over

the 20 test instances (different from training instances). On

average, segmentations were performed in approximately 6 min

on a standard Pentium III, 1 GHz PC, for all four selected target

structures. This does not include the training phase, which is done

once and for all, in advance (and took about 20 h, mostly spent

training the texture classifiers on all four structures). We present
UNC 698
699
700

Fig. 6. Anatomically correct caudate nucleus (green + red) and manually

segmented caudate nucleus (green) as obtained from the delineation

variability. The nearby ventricles and corpus callosum are rendered in

gray. (For interpretation of the references to colour in this figure legend, the

reader is referred to the web version of this article.)
the accuracy of several versions of our segmentation system to

demonstrate the influence of its various components.

Noise robustness

The sensitivity of our segmentation methodology to imaging

parameters was evaluated on a series of MRIs acquired on different

scanners (from three different medical hospitals), with different

sequences for various individuals. Twelve images were available

with 3 MRIs per acquisition protocol.
t2.1Table 2

Performance of our segmentation system on the MRIs with different image

characteristics and different learning sets (from different scanners) bc.c.Q
denotes corpus callosum t2.2

Distance (mm) c.c. Ventricles Caudate Hippocampus t2.3

Standard learning set t2.4
Mean 95% sym 0.3 2.9 1.8 2.7 t2.5

0.6 2.9 2.5 4.2 t2.6
t2.7

Adapted learning set t2.8
Mean 95% sym 0.3 2.0 1.6 2.3 t2.9

0.5 2.7 2.2 3.8 t2.10
t2.11

Mixed learning set t2.12
Mean 95% sym 0.3 2.2 1.7 2.5 t2.13

0.9 2.6 2.6 4.3 t2.14
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We tested the algorithm with the standard learning set whose

labeled samples belonged to the homogeneous batch of MRIs

we have used so far, with a learning set adapted to each

acquisition protocol (with labeled samples coming from similar

acquisitions in terms of parameters and scanners), and with a

mixed learning set with labeled samples coming from the entire

set of heterogeneous MRIs. In all three cases, the performances

were evaluated on a test subset different from that in the

learning set.

Table 2 reports both distance measures for all four structures.

Discussion

The explosive growth in brain imaging technologies has been

matched by a tremendous increase in the number of investigations

focusing on the structural and functional organization of the human

brain. A pivotal first step in elucidating the correlation between

brain structure and function, the precise segmentation and labeling

of cerebral structures is a challenging objective in neuroinformatics

in view of the wide variety of shapes and appearances these

structures exhibit.

Our approach to that challenge, the brain MRI automated

segmentation system we have detailed in this paper relies on expert

prior knowledge about the target structures, their interrelationships

and the characteristics of the surrounding tissues to achieve

increased performances.

Segmentation accuracy

As illustrated in Table 1, segmentation of caudate and callosum

were good and further improved with the use of shape, distance

and texture constraints. A few odd-looking caudates (far from the

mean shape) worsened the performances when a shape constraint

was added (the 95% symmetric Hausdorff distance was worse than

the one computed with the basic framework while the mean error is

better). This demonstrates the difficulty of designing a learning set

representative enough for the shape model to cover all the

encountered shapes adequately. Clearly, a compromise must be

found between too exhaustive a learning set which would induce

poor shape constraints overall, and too specific a learning set which

might improve performance in a particular niche only, to the

detriment of everywhere else. Incidentally, principal component

analysis may not be optimal for building a shape model

representative of the true anatomical variability. Here also, a priori

information could be used to build a better shape model.

The less accurate segmentation of the ventricles is explainable

because our deformable templates cannot reach as far as the

anterior apex of the inferior horns as they would have to go

through partial volume effect voxels. However, even though these

voxels were included in the delineation protocol, manual delin-

eations exhibit a large variability in this area, which should be

understood when considering the relatively lower performances of

our automated approach. Furthermore, the model-to-manual

maximum Hausdorff distances Hasym(Pj
t, GSj) were good (2.2

with all constraints), since our approach correctly segmented the

breachableQ parts of the ventricles.

To improve the ventricle segmentation performances, we

defined on the ventricle simplex mesh a zone which covered

the apex area, and for the vertices in this zone we locally

decreased the amount of regularization (a = 0.01) and increased

the influence of the image force (b = 0.5, ctexture = 0.49). We
ED P
ROOF

obtained a better mean error: 1.5 mm with a 2.2-mm symmetric

Hausdorff measure.

Overall, the feedback rule was particularly effective, especially

in reducing the maximal errors. However, poor contrast and noise

hampered the hippocampus deformable templates. The importance

of the texture constraint was particularly evident for this structure.

These segmentation results should however be considered in

the light of the intra/interoperator variabilities associated with the

delineations. Several operator variability measurements can be

found in the literature, though a consensus is still lacking as to

which error measure to use, which makes for another difficulty in

comparing algorithms and studies. Reported values are reasonably

small for the corpus callosum (2.5% of the callosal area in a study

of the choice of the midsagittal section around which the callosa

slices are delineated (Rauch and Jinkins, 1996), 1 mm RMS error

for interoperator variability in (Narr et al., 2000). Nonetheless, the

average interoperator error can be as high as 13% volume

difference for the hippocampus (Obenaus et al., 2001), a difficult

structure to outline in an MRI. Those variabilities affect both the a

priori delineated samples in the learning sets which are used to

build the shape and texture constraints, and the gold standards that

we use to evaluate the performances of the automated segmentation

algorithm. In this regard, our segmentation system seems to be

doing as well as a manual operator could do.

Noise robustness

Noise robustness was good for all structures with nonetheless a

significant decrease for the hippocampus, mostly due to the

decreased performances of the texture filter for that structure. As

expected, the segmentation results were improved when an adapted

learning set was used.

Comparable results were obtained with a mixed learning set.

We however observed a slight decrease in segmentation perform-

ance relative to those obtained with the adapted learning set. Mixed

sets also induced a greater variability in the segmentation quality,

which is probably explained by the lack of representativity of the

learning set. Clearly, the learning set is much harder to make

representative when a large variety of MR characteristics must be

represented. Additional experiments with more samples in the

learning set confirmed our intuition (this is mostly due to the

performances of the texture filter).

At a glance, the segmentation quality for the corpus callosum or

the ventricles is somewhat independent of the imaging character-

istics. However, these have to be taken into account much more

cautiously when more difficult structures have to be segmented,

such as the caudate nucleus or the hippocampus.

Assessing performances

Overall, the segmentation performance compared favorably

with those reported in the literature (Gerig et al., 2001; Pizer et al.,

1999; Styner et al., 2003). A detailed comparison of segmentation

performances is however trickier. Clearly, in view of the complex-

ity of the segmentation problem, there are no general prescriptions

for selecting a bgoodQ segmentation algorithm. This choice must

not only be driven by the image characteristics (type of noise and

signal–noise ratio, texture characteristics, contrast of the target

object with respect to surrounding pictorial elements, bias fields,

etc.) but also by the possible usage constraints (algorithmic

complexity with respect to available memory/CPU resources, time
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limits if real-time applications are envisioned, etc.). Downstream

treatments that follow this segmentation step must be considered as

well (diagnosis, morphometric analysis, shape recognition, etc.).

Consequently, assessing the true performance of a given segmen-

tation tool per se is a difficult, if not ill-posed, task, as ground truth

is elusive. It seems more sound to compare segmentation

algorithms by measuring the overall quality of the complete chain

of processes of which they usually are part: the best segmentation

technique then becomes that which maximizes the overall system

performance.

Conclusion

We presented a general framework for the automated

segmentation of anatomical structures in brain MRIs. A hybrid

combination of external and internal energies, modeling a variety

of aspects of prior neuroanatomical knowledge, drives a series of

3-D deformable templates towards the boundaries of these target

structures. Explicit rules, also derived from medical expertise,

further increase the overall accuracy and robustness of the

method.

The validity of this approach was demonstrated on the four

selected target structures. The developed framework could of

course readily be extended to segment additional structures. A

more in-depth study of the multivariate relations between the

various parameters of the deformation scheme and how they affect

the accuracy of the match should also be conducted.

A number of additional rules could also increase the overall

performance. In particular, additional feedback loops could be

devised to tackle the segmentation of difficult images where

robustness is more pressing, when lesions are apparent for

instance. We could also incorporate segmentation strategies (sets

of metarules) to monitor the number of times the error-checking

rules (leak prevention, for instance) have been triggered and either

interact with the human operator (to alert them about a particularly

difficult segmentation, or require assistance in an area of the image,

etc.) or select an entirely different set of parameters and shape/

texture constraints.
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