Abstract Number: 1026
Last Modified: January 6 2008

Submitted By: Caroline Brun

VOLUMETRIC DIFFERENCES IN BRAIN STRUCTURE IN IDENTICAL AND FRATERNAL TWINS COMPUTED USING RIEMANNIAN TENSOR-BASED MORPHOMETRY

Caroline Brun¹, Natasha Lepore¹, Xavier Pennec², Yi-Yu Chou¹, Agatha D. Lee¹, Marina Barysheva¹, Katie McMahon³, Greig de Zubicaray³, Margie Wright⁴, Arthur W. Toga¹, Paul M. Thompson¹

¹Laboratory of Neuro Imaging, UCLA, Los Angeles, CA, United States / ²Asclepios Research Project, INRIA, Sophia-Antipolis, France / ³Centre for Magnetic Resonance, University of Queensland, Brisbane, Australia / ⁴Genetic Epidemiology Lab, Queensland Institute of Medical Research, Brisbane, Australia

Introduction: Twin studies can disentangle the genetic and environmental influences on brain morphology, creating maps of their relative contribution to anatomical variance in a population. Here, we used Tensor-Based Morphometry (TBM) to study how genes influence normal brain structure, based on MRI scans of 10 monozygotic (MZ) twin pairs and 10 same-sex healthy dizygotic (DZ) twin pairs. Although TBM is increasingly used to study brain disease, this is one of its first applications to a genetic study.

Methods: 3D T1-weighted MRI scans of all 40 twins were skull-stripped and aligned, via 9-parameter transformation, to the Colin27 standard space. Preprocessed images were then fluidly registered to a common template, consisting of a typical DZ subject. For registration, we modified a previously developed elastic matching algorithm that regularizes the full deformation tensor S using a Log-Euclidean metric [1]. Our new fluid registration method [2] regularizes a Riemannian energy functional based on the rate-of-strain tensors ∇v (where the template velocity v is the time-derivative of u) instead of ∇u in [1]; this formally guarantees that the resulting mappings are one-to-one and invertible, but can still recover arbitrarily large deformations. From the registration, the displacement field (u) and deformation tensors S were derived (with $S = \sqrt{J^T J}$; J is the Jacobian matrix; $J = \nabla u^T \nabla u$). The average of the absolute difference in regional volume was computed from the determinant of S (one value per voxel), to measure relative volume expansion or shrinkage. Furthermore, the difference in the tangent of the geodesic anisotropy ($tGA(S) = \tanh((\text{trace}(\logm(S) - \text{trace}(\logm(S)/3)*I)^2)^{1/2}$), a measure of the anisotropy in local shape changes, was also computed for both groups.

Results: Mean absolute differences in regional brain structure in MZ twins (Figure 1, left) and DZ twins (Figure 1, right) are shown as well as images of tGA in MZs (Figure 2, left) and DZs (Figure 2, right). Red colors indicate regions with large differences between twins; in regions colored blue, the difference is close to 0%. These preliminary results show that intra-pair differences in regional structure volumes were smaller between MZ twins than between DZ twins, especially in deep white matter structures. To a lesser extent, DZs were also shown to have greater differences in tGA than MZs, suggesting that this parameter may be under lesser genetic control.

Conclusions: This work will serve as the basis for mapping heritable aspects of brain structure, automatically computing maps of genetic parameters from a large twin database, and using full (matrix Lie group) multivariate statistics in the computation and analysis of the deformation mappings.