HOME| Alzheimer's| HIV/AIDS| Schizophrenia| Drug Abuse| Development| ENIGMA Project| Projects| Publications| People

Alzheimer's gene disrupts brain's wiring 50 years before disease hits

Damage may begin at a young age, study finds

Contact: Dr. Paul Thompson (310)206-2101 thompson@loni.ucla.edu

or Mark Wheeler, UCLA Health Sciences Media Relations (310)794-2265 MWheeler@mednet.ucla.edu

Radio Interview (2 minutes, KCBS News 740 AM/106.9 FM, San Francisco)

Brain Graphic by Kali Ciesemier / For the Los Angeles Times; Brain Wiring Disrupted in People Carrying the Risk Gene (click each image for large versions)

[Full article, .pdf, 0.9MB]
Los Angeles Times (May 12, 2011)

US News and World Report
Web MD
KCBS-TV (San Francisco; May 12, 2011)
La Stampa (Rome; in Italian)
I Saude (Brazil; in Portuguese)
Alzheimer Reise (Italy; in Italian)
TV 2 Nyhetene (Norway; in Norwegian)
Diogo Biotech (Brazil; in Portuguese)
Salud 180 (Brazil; in Portuguese)
In Vivo News (Brazil; in Portuguese)
Radio Canada (Montreal; in French)
Yahoo Quebec (in French)
Alzheimer Tunisia (in French)
HON News (Switzerland)
Calgary Herald
The Sacramento Bee
Sympatico Canada (in French)
Yahoo News India
One Pakistan News
The National Turk
Yahoo News Malaysia
The Mangalorean (India)
Bioknow (China)

Yahoo News Singapore
Yahoo News Philippines
Boston Herald
Chicago Tribune
Montreal Gazette
Toronto Telegraph, Ottawa Citizen, Calgary Herald
Baltimore Sun, Modesto Bee, Fresno Bee
Yahoo News
Bellingham Herald, Global Winnipeg, Press of Atlantic City
Pittsburgh Medical Technology Examiner
Pakistan Tribune (Pakistan)
Online News, Islamabad (Pakistan)
Biomed Middle East (Turkey)

American Health Assistance Foundation (AHAF)
U.S. Office of Minority Health
News Track India
Times Colonist (Canada)
Thai Indian News
Sulekha News (Indo Asian News Service)
Herald Online
Medical News Today Psych Central (by Rick Nauert)
News One Bioportfolio.com Bradenton.com IndiaNest.com IslandPacket.com Pesquisa Biomedica (Rio de Janeiro, Brazil) Jehlum Post (with audio) Top News MedHours.com BND.com Nano Patents and Innovations Yuba Net Centre Daily
The Republic (Alzheimer's damage may begin at a young age, study finds, May 12-13, 2011)
Disabled World (Alzheimer's Risk Gene Starts Damage 50 years before the Disease Strikes? May 13, 2011)
Med India (CLU Gene Begins to Damage Brain 50 years before Alzheimer's Onset, May 15, 2011)
Red Orbit Medical Express Webwire
Bioscience Technology Sify.com
Health Canal (Alzheimer's Risk Gene Disrupts Brain's Wiring 50 Years Before Disease Hits, May 13, 2011)
The Examiner (UCLA Alzheimer's disease research: surprising new findings, May 13, 2011)

Research Summary - by Mark Wheeler (May 12, 2011)

What if you were told you carried a gene that increases your risk for Alzheimer's disease? And what if you were told this gene starts to do its damage not when you're old but when you're young?
Brace yourself.
Scientists know there is a strong genetic component to the development of late-onset Alzheimer's. In 1993, researchers discovered a gene known as ApoE4 — carried by about a quarter of us — that triples the risk for getting Alzheimer's. In 2009, three more risky genes were discovered, and one of them, called clusterin, or CLU, was found to up the risk of getting Alzheimer's by another 16 percent.
But nobody could explain what the CLU gene actually did. Now, UCLA researchers know, and the explanation is a doozy: This risk gene begins to damage your brain a full 50 years before people normally get Alzheimer's.
In the current online edition of the Journal of Neuroscience, Paul Thompson, a UCLA professor of neurology, and his colleagues report that the C-allele of the CLU gene (an allele is one of two or more forms of a gene), which is possessed by 88 percent of Caucasians, impairs the development of myelin, the protective covering around the neuron's axons in the brain, making it weaker and more vulnerable to the onset of Alzheimer's much later in life.
The researchers scanned the brains of 398 healthy adults ranging in age from 20 to 30 using a high-magnetic-field diffusion scan (called a 4-Tesla DTI), a newer type of MRI that maps the brain's connections. They compared those carrying a C-allele variant of the CLU gene with those who had a different variant, the CLU T-allele.
They found that the CLU-C carriers had what brain-imaging researchers call lower "fractional anisotropy" — a widely accepted measure of white-matter integrity — in multiple brain regions, including several known to degenerate in Alzheimer's. In other words, young, healthy carriers of the CLU-C gene risk variant showed a distinct profile of lower white matter integrity that may increase vulnerability to developing the disease later in life.
The discovery of what this gene does is interesting on several levels, said Thompson, the senior author of the study.
"For example, Alzheimer's has traditionally been considered a disease marked by neuronal cell loss and widespread gray-matter atrophy," he said. "But degeneration of myelin in white-matter fiber pathways is more and more being considered a key disease component and another possible pathway to the disease, and this discovery supports that."
Thompson said four things are surprising with the discovery of this gene's function:
1) This risk gene damages your brain a full 50 years before people normally get Alzheimer's. The damage can be seen on an MRI scan, but there are no symptoms yet.
2) It's now known what this mysterious gene does — namely, make your brain wiring vulnerable to attack by impairing the wiring before any senile plaques or tangles develop. 
3) Rather than being a gene that few people have, a whopping 88 percent of Caucasians have it. "So I guess you could say the other 12 percent have an 'Alzheimer's resistance gene' that protects their brain wiring," said Thompson, who is also a member of UCLA's Laboratory of Neuro Imaging and the UCLA Brain Research Institute.
4) Finally, he said, knowing the role of this gene is useful in predicting a person's risk of the disease and in seeing if you can step in and protect the brain in the 50-year time window you have before the disease begins to develop.
Of course, the obvious question is if most of us have this "bad" gene, why isn't Alzheimer's rampant in young people?
Less myelination in CLU-C carriers may not translate into poorer cognition in youth, said Thompson, because the brain can compensate. "The brain has a lot of built in redundancy — miles and miles of brain connections," he said. Still, he said, with the passage of time — and when exacerbated by other factors, such as normal neuron death as we age and plaque and tangle development in the early stages of Alzheimer's — reduced myelin integrity could facilitate cognitive impairment.
"So it's unlikely we are seeing the earliest possible signs of Alzheimer's-associated brain changes in these young people," Thompson said. "It's more likely the reduced fiber integrity represents an early developmental vulnerability that may reduce brain resilience to later Alzheimer's disease pathology. In other words, its mechanism of action may not be part of the classic Alzheimer's pathways that lead to abnormal amyloid plaque and neurofibrillary tangle accumulation in the brain."
The mapping of structural brain differences in those at genetic risk for Alzheimer's disease is crucial for evaluating treatment and prevention strategies, Thompson said. Once identified, brain differences can be monitored to determine how lifestyle choices influence brain health and disease risk.
"We know that many lifestyle factors, such as regular exercise and a healthful diet, may reduce the risk of cognitive decline, particularly in those genetically at risk for Alzheimer's, so this reminds us how important that is," he said.

The study is freely available here.

For more information on the study, contact Paul Thompson: thompson@loni.ucla.edu

Journal of Neuroscience Article:

[1] Braskie MN,* Jahanshad N,* Stein JL,* Barysheva M, McMahon KL, de Zubicaray GI, Martin NG, Wright MJ, Ringman JM, Toga AW, Thompson PM (2011). Common Alzheimer's disease risk variant within the CLU gene affects white matter microstructure in young adults, Journal of Neuroscience, May 8 2011. [*equal contribution]. [.pdf, 0.9MB]

Media stories on other research projects can be found here and here.

Related Publications

  • Obesity and Alzheimer's Disease
  • Mapping the Spread of Alzheimer's Disease
  • Mapping brain growth in children
  • Schizophrenia
  • Did you Inherit Your Brain Structure and IQ?
  • HIV/AIDS and the Brain
  • other research areas
  • (back to main list)

    Contact Information

  • Mail:

    Paul Thompson, Ph.D.
    Professor of Neurology
    UCLA Lab of Neuro-Imaging
    Dept. Neurology and Brain Research Institute
    635 Charles Young Drive, UCLA Medical Center
    Westwood, Los Angeles CA 90095-1769, USA.

  • E-mail: thompson@loni.ucla.edu
  • Tel: (310)206-2101
  • Fax: (310)206-5518