Low serum levels of ApoE associate with hippocampal atrophy in the ADNI cohort

Nicole Chow, BS1 2, Kristy Hwang, BS1 2, Edmond Teng, MD, PhD1, Paul M. Thompson, PhD1 2, Karen Gylls, PhD1, Greg Cole, PhD1, Clifford Jack, MD1, Leslie Shaw, PhD4, John Trojanowski, MD, PhD4, Holly Soares, PhD4, Michael W. Weiner, MD4, Liana G. Apostolova, MD, MS1 2

1 Department of Neurology, University of California Los Angeles, Los Angeles, CA, United States
2 Laboratory of Neuro Imaging, University of California Los Angeles, Los Angeles, CA, United States
3 Department of Pathology and Lab Medicine, University of Pennsylvania, Philadelphia, PA, United States
4 Department of Radiology, University of California San Francisco, San Francisco, CA, United States

Background:
Alzheimer’s Disease (AD) has a long latent stage. However, there is no reliable presymptomatic biomarker yet. Considering the ease of access to peripheral blood samples, there has been significant interest in serum or plasma protein biomarkers.

Methods:
We analyzed the imaging and plasma protein biomarker data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) study. Our sample included 475 subjects – 58 normal controls (NC), 310 MCI and 107 AD subjects of whom 244 were apolipoprotein E4 gene (APOE4) carriers and 231 APOE4 non-carriers. Baseline EDTA plasma samples were collected and analyzed with a 190 analyte multiplex immunoassay panel based on the Luminex xMAP platform. Hippocampal segmentations were created from 1.5T 3D T1-weighted brain MRI scans, with a novel automated segmentation technique based on the AdaBoost machine learning method. Hippocampal thickness was analyzed with the radial distance technique. We applied linear regression models to study the associations between hippocampal radial distance and several promising plasma protein AD biomarkers – apolipoprotein E (ApoE), apolipoprotein J (ApoJ), brain derived neurotrophic factor (BDNF), heat shock protein 40 (HSP40), interleukin 6 (IL6) and tumor-necrosis factor α (TNFα). Our linear regression models were adjusted for age and gender in the pooled sample. Considering a possible modulation by APOE4 genotype, we also ran separate analyses in the APOE4 carrier and non-carrier groups. For multiple comparisons correction, we used permutations with a threshold of p<0.01.

Table 1. Demographic and biomarker data [mean (SD)]

<table>
<thead>
<tr>
<th>Variable</th>
<th>APOE4 carriers (N=244)</th>
<th>APOE4 non-carriers (N=231)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, yr</td>
<td>74.21 (6.907)</td>
<td>75.85 (7.771)</td>
<td>0.015</td>
</tr>
<tr>
<td>Gender, M/F</td>
<td>153/91</td>
<td>144/87</td>
<td>0.934</td>
</tr>
<tr>
<td>Education, yr</td>
<td>15.40 (3.101)</td>
<td>15.94 (2.935)</td>
<td>0.053</td>
</tr>
<tr>
<td>MMSE</td>
<td>25.86 (2.387)</td>
<td>27.09 (2.310)</td>
<td><0.001</td>
</tr>
</tbody>
</table>

Results:
The demographic comparisons of APOE4 carriers and non-carriers are presented in Table 1. The groups were well balanced with respects to gender and education. There were significant between-group differences in mean age and MMSE score at baseline.

Plasma ApoE levels showed significant positive associations with hippocampal radial distance in the CA1 and subiculir regions bilaterally in the pooled sample (left β=0.28, pcorrected=0.001; right β=0.23, pcorrected=0.046; Figure 1, top row). Regionally significant positive associations were present bilaterally in APOE4 carriers (left β=0.14; right β=0.27; Figure 1, middle row). The association pattern in APOE4 non-carriers was different from that seen in APOE4 carriers especially on the right where it took a negative direction (left β=0.19; right β=-0.18; Figure 1, bottom row). ApoJ, BDNF, TNFα and IL6, failed to show significant association with hippocampal radial distance (maps not shown).

Conclusions:
Decreased plasma levels of ApoE, a protein known to have amyloid β binding properties and to play an important role in amyloid β clearance, have been reported in AD. Studies have indicated that plasma ApoE protein levels may reflect disease status. Previous works using a young cohort at-risk for familial Alzheimer’s disease (FAD) and another using NC and early-stage AD subjects, have shown that APOE4 carriers have lower levels of plasma ApoE compared to APOE4 noncarriers. Here, we report that lower plasma ApoE protein levels correlate with smaller hippocampal radial distance, a measure of hippocampal atrophy and an established biomarker for AD, in the pooled sample and among APOE4 carriers. This association appears to be more largely driven by the APOE4 carrier subgroup.

Acknowledgments: This study was generously supported by NIA K23 AG026803 (jointly sponsored by NIA, AFAR, The John A. Hartford Foundation, the Atlantic Philanthropies, the Starr Foundation and an anonymous donor), the Easton Consortium for Alzheimer’s Drug Discovery and Biomarkers, NIA P50 AG16570, NIBIB EB00856, NIBIB EB008281, NIBIB EB007913, NICHD HD 050735, NCRR P41 RR013842. Data collection was funded by NIA U01AG024904.