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ABSTRACT

Diffusion weighted MR imaging is a powerful tool that
can be employed to study white matter microstructure by
examing the 3D displacement profile of water molecules
in brain tissue. By applying diffusion-sensitizing gradients
along a minimum of 6 directions, second-order tensors can be
computed to model dominant diffusion processes. However,
it has been shown that conventional DTI is not sufficient to
resolve crossing fiber tracts. More recently, High Angular
Resolution Diffusion Imaging (HARDI) seeks to address this
issue by employing more than 6 gradient directions. In this
paper, we introduce the Tensor Distribution Function (TDF),
a probability function defined on the space of symmetric and
positive definite matrices. Here, fiber crossing is modeled as
an ensemble of Gaussian diffusion processes with weights
specified by the TDF. Once this optimal TDF is determined,
ODF can easily be computed by analytic integration of the
resulting displacement probability function. Moreover, prin-
cipal fiber directions can also be directly derived from the
TDF.

1. INTRODUCTION

In the past decade, diffusion magnetic resonance imaging
(MRI) has become a powerful tool in studying the structure
of fibrous materials. By applying diffusion sensitizing gradi-
ents, diffusion MRI characterizes particle diffusivity profile
in various tissues. When the duration of the applied diffusion
sensitizationδ is much smaller than the time between the two
pulses, the MR signal attenuation is related to the displace-
ment probability function using a Fourier integral relationship
with respect to a wave vectorq [1].

In brain imaging, diffusion MRI is particularly advanta-
geous over conventional non diffusion-weighted MRI due to
its ability to reveal the configuration and orientation of fiber
tracts in white matter. The Diffusion Tensor MRI (DT-MRI)
proposed in [2] models water displacement probability func-
tion using a zero-mean Gaussian distribution whose covari-
ance matrix, a second-order positive symmetric tensor, thus
represents the shape of local fiber tracts. Although extremely
powerful and easy to compute, DT-MRI is not without it’s
disadvantages. For example, any Gaussian probability distri-
bution function has only one orientational mode, and thus can
not resolve fiber crossing.

More recently, High angular resolution diffusion imaging
(HARDI) seeks to address this issue by sampling the q-space
on shells with fixed radii. Methods such as the q-ball imaging
technique [3], the Persistent Angular Structure (PAS) tech-
nique [4] and spherical-deconvolution techniques [5] are pro-
posed to recover partial information of the displacement prob-
ability function, while still permitting the inference of under-
lying fiber orientations to be made.

In this paper, we propose a new approach, the computa-
tion of the tensor distribution function (TDF), to address fiber
crossing and non-Gaussianity in diffusion MR images. By us-
ing Gaussian distributions as basis functions, we expand the
unknown displacement probability function with the weights
given by the TDF. It can also be viewed as a natural and
probabilistic extension of multi-compartmental model. With
the computation of TDF, the water displacement probability
function, orientation distribution function (ODF), tensor ori-
entation distribution (TOD), and its corresponding anisotropic
properties can all be obtained through simple analytic rela-
tions.

2. THEORY

In standard diffusion weighted MRI, images are acquired
using the Stejskal-Tanner pulsed gradient spin echo method.
With some simplifications (rectangular pulse profiles), mea-
sured image intensitesS are linked top, the displacement
probablity function of water molecules via the following
Fourier transform

S(q) = S(0)

∫

p(x) exp(iq · x)dx (1)

here the wavenumberq = rδG, wherer, δ, andG are the gy-
romagnetic ratio, the duration of the diffusion-sensitization,
and the applied magnetic gradient vector. Without loss of
generality, let us assume the constant S(0) is 1.

Assuming a simple Gaussian-diffusion one-tensor model,
the displacement probability function evaluated at position x
(given diffusion tensorD, and diffusion timet) is

p(x) = ((4πt)3 det(D))−
1

2 exp
(

−
xtD−1x

4t

)

(2)

Thus, the measured diffusion MR image intensities in this
one-tensor case is simplyS(q) = exp(−tqtDq). Often times,



it is also useful to use the normalizationq̃ = q/|q|, and the no-
tationb = t|q|2. In this case, we haveS(q̃) = exp(−bq̃tDq̃).

2.1. Tensor Distribution Function

Let us first denote the space of symmetric positive definite
3-by-3 matrices asD. We seek an probablistic ensemble of
tensors, as reprented by a Tensor Disribution FunctionP de-
fined on the tensor spaceD, that best explains the observed
diffusion-weighted images. In this case, the calculated image
intensity is

Scalculated(q) =

∫

D∈D

P (D) exp
(

− tqtDq
)

dD (3)

To solve an optimal TDFP ∗, we apply multiple diffusion-
sensitizing directionsqis, and arrive atP ∗ using the least
square principle

P ∗ = argmin
P

∑

i

(

Sobs(qi) − Scalculated(qi)
)2

(4)

To simplify our derivations, let us define the error vector
E(qi) = Sobs(qi) − Scalculated(qi) to be the contribution to
the total error with respect toqi. ForP (D) to be a true tensor
distrubtion fucntion, we have to enforce two contraints, i.e.,
the nonnegativtiy constraint:P (D) ≥ 0 for everyD, and the
probability density constraint:

∫

P (D)dD = 1.
To enforce the first constraint, we utilize the nonnega-

tivity property of the exponential function and letP (D) =
exp(R(D)). The minimization problem as proposed above is
now optimized in the associatedR space, thus ensuring the
nonnegativity of the resulting TDF. To this end, the gradient
descent in theR space for this minimization problem is thus:

dR

dτ
(D) =

∑

i

2E(qi) exp(R(D))F (D, qi) (5)

Here,τ is an artificial time, andF (D, qi) = exp
(

− tqt
i
Dqi

)

.
Let us now turn to address the second constraint. We first

rewrite this constraint in theR space:
∫

D∈D
exp

(

R(D)
)

dD =
1, and modify the gradient direction in Eq.(??) by gradient
projection onto the constraint space. This gives us the follow-
ing modified gradient descent

dR

dτ
(D) =

∑

i

E(qi) exp(R(D))F (D, qi) + λ exp(R(D))

(6)
where

λ = −

∫

D∈D
exp(R(D))

∑

i
E(qi) exp(R(D))F (D, qi)dD

∫

D∈D
exp(R(D))2dD

2.2. Parametrizing Tensor Space D

The solution spaceD is a 6 dimensional space, and some re-
duction is necessary for numerical optimization purposes.To
this end, we assume that two eigenvalues (out of three) are
equal for each individual tensor inD. With this assumption,
we only need to specify, for each tensor, one unit direction
on the sphere which we associate with the third eigenvalue.
Thus, each tensor is now represented by two scalars (spec-
ifying 3 eigenvalues) and one unit direction, allowing us to
reduceD to a 4-dimentsional space. In other words, every
diffusion tensor D can be expressed usingD(λ, θ), where the
eigenvaluesλ = (λ1, λ2) (with λ2 the repeated eigenvalue),
andθ = (θ1, θ2) the azimuthal and polar angles associated
with λ1. Notice that here we do not specify whether the
two equal eigenvalues are larger or lesser compared to the
third eigenvalue, thus allowing more types of tensors to be
included.

Lastly, the unit direction associated with each tensor in
D is initially expanded and parameterized with respect to the
n diffusion-sensitizing gradient directionsqis. The rationale
behind this particular discretization is that the angular reso-
lution of computed fiber tracts should be linearly correlated
with the number of diffuson-sensitzing gradients employed
when acquiring HARDI. Once an initial solution is computed
for the tensor distribution function, we further refine the angu-
lar resolution (beyond that given by the diffusion-sensitizing
gradient directions) by using a multi-resolution scheme.

2.3. From TDF to ODF and Beyond

Once the optimal TDF is calculated, the displacement proba-
bilty functionp is simply:

p(x) =

∫

D∈D

P (D)((4πt)3 det(D))−
1

2 exp
(

−
xtD−1x

4t

)

dD

(7)
Moreover, the ODF can be analytically computed by ra-

dial integration:

ODF (x̃) = C

∫

∞

r=0

p(rx̃)dr

= C

∫

D∈D

P (D)
(

det(D)x̃tD−1x̃
)−

1

2

dD (8)

HereC is a normalizing constant. Lastly, we determine
dominant fiber directions by examing the peaks in the Ten-
sor Orientation Distribution Function (TOD), the marginal
density function of TDF by integrating out the eigenvalues
λ = (λ1, λ2):

TOD(θ) =

∫

λ

P (D(λ, θ))dλ (9)



Here, we note that computing TOD may be advantageous
when comparing our TDF approach to methods such as Q-
ball imaging, where determination of dominant fiber tract di-
rections is less straightforward.

3. RESULTS

In this section, we present experimental results to validate
the proposed TDF approach. Two diffusion-sensitizing
gradient protocols are used. The first protocol utilizes 27
diffusion-sensitizing gradient directions, evenly distributed
on the hemisphere, and three baseline scans with no diffu-
sion sensitization (i.e., T2 images), while the second proto-
col has 94 diffusion-sensitizing gradient directions, and10
baseline scans with no gradient sensitization. To assess the
performance of the TDF approach, we first simulate various
configurations of one-tensor systems using differentb values
and signal-to-noise ratios (SNR) (similar to those seen in real
HARDI data). In order to quantitatively compare the pro-
posed TDF approach to other methodologies in the literature,
we compare the calculated ODF (from the computed TDF)
and the true ODF using L1 norm, L2 norm, and the Kullback-
Leibler distance. Here, we choseλ1 = 18 and λ2 = 2
(10−10m2s−1 ) as the eigenvalues for each individual tensor,
and employed Rician noise in our simulations. ODF is ren-
dered using 642 points, as determined using an icosahedral
approximation of the sphere.

Table 1 compares the mean and standard deviation of the
three performance measures with a fixedb value and different
SNR’s (10, 15, and 20) using the 27-direction protocol. The
results indicated that the TDF approach is robust, and is rela-
tively independent of the level of SNR. Moreover, the results
are comparable to those reported in [5]. In tables 2 and 3, we
investigated the influence ofb values on the performance mea-
sures, and the results indicated that the TDF approach, simi-
lar to other methodologies, performs better with increasing b
values (in this paper,b ranges from 1000 to 4000s/mm2). To
assess the performance in resolving fiber-crossing, we simu-
lated two-tensor systems with equal weights and varying an-
gles of crossing (45, 60 and 90 degrees), and the correspond-
ing performances measures are shown in tables 4. Typical
examples of recovered ODF’s are shown in figure 1.

Similar simulations of fiber crossings were conducted us-
ing the 94-direction protocol. Interestingly, our resultsindi-
cate that the 27-direction protocol performs comparable tothe
94-direction protocol, indicating the numerical stability of the
TDF approach.

In the next experiment, we investigate the concept of ten-
sor orientation distribution function (TOD) by simulating2-
tensor systems with 90-degree crossing using the 94-direction
protocol (the two tensors are:10−10diag(18, 2, 2)m2s−1 and
10−10diag(2, 18, 2)m2s−1). Examples of computed TOD’s
are plotted at the bottom of Figure 1. Visually, we observe
that the recovered TOD has two peaks corresponding to the

true fiber orientations. To help visualize the recovered ODF’s,
two fiber bundles crossing at 90 degrees were simulated, us-
ing similar parameter settings as above, in a 10 by 10 by 1 grid
(Figure 2, top left), notice that the fiber crossing is visually
clearly resolved. In this case, the mean angular separationof
the two recovered tensors, as computed using the correspond-
ing TOD’s, is 89.8 degrees with a standard deviation of 4.30
degrees.

To validate the TDF approach using real imaging data, the
diffusion-weighted MR images of a normal control subject
were acquired using (****paul, needs specifics for the real
data here). Two regions are used: region one covers crossing
of corona radiata and corpus callosum; region two is obtained
from the fanning of the arcuate fascicle. The results are shown
in Fig. 2. Notice that in these cases, the recovered ODF plots
appear consistent with known anatomical structures.

Table 1. Mean and standard deviation (in parenthesis) of the
three performance measures for one tensor simulation results
with varying SNR,b = 1200s/mm2

SNR 10 15 20
KL .0020 (1.1e-4) .0022 (1.0e-4) .0023 (6.2e-5)
L1 7.6e-4 (1.7e-5) 8.2e-4 (1.8e-5) 8.8e-4 (1.9e-5)
L2 .0032 (9.5e-5) .0034 (3.5e-5) .0035 (3.1e-5)

Table 2. Mean of the three performance measures for one
tensor simulation results with varyingb, SNR = 15

b 1000 1500 2000 2500 3000 3500 4000
KL 0.0022 0.0022 0.0021 0.0019 0.0018 0.0014 0.0013
L1 8.2e-4 8.2e-4 7.6e-4 7.6e-4 7.0e-4 6.4e-4 5.7e-4
L2 0.0034 0.0034 0.0033 0.0032 0.0030 0.0027 0.0026

Table 3. Estimated standard deviation of the three perfor-
mance measures for one tensor simulation results with vary-
ing b, SNR = 15

b 1000 1500 2000 2500 3000 3500 4000
KL 1.2e-4 5.2e-5 8.7e-5 7.8e-5 7.9e-5 2.2e-4 1.4e-4
L1 6.4e-5 6.3e-4 6.0e-4 6.0e-4 5.5e-4 5.9e-5 3.9e-5
L2 1.1e-4 3.5e-5 7.1e-5 7.0e-5 7.2e-5 2.1e-4 1.4e-4

Table 4. Mean (and standard deviation) of the three perfor-
mance measures for two tensor simulation results with vary-
ing angles,b = 1200s/mm2, SNR = 15

Angle 45 60 90
KL 2.51e-3 (2.21e-4) 3.75e-3 (5.72e-4) 3.12e-3 (4.21e-4)
L1 4.89e-4 (2.66e-5) 5.62e-4 (3.39e-5) 5.28e-4 (3.39e-5)
L2 2.08e-2 (5.44e-3) 3.70e-3 (2.82e-4) 1.27e-2 (1.60e-3)

4. CONCLUSION

In this paper, we introduced the computation of Tensor Dis-
tribution Function (TDF) as a novel methodology to resolve
intravoxel fiber crossing in HARDI. We presented math-
ematical formulations of TDF, and proposed a projected
gradient descent algorithm for the numerical computation of
TDF. With minor constraints on the diffusion process and
the anisotropy of individual tensors, the proposed approach
solves for an underlying tensor ensemble that best describes



Fig. 1. Top: Examples of typical recovered ODFs of
two-tensor system at 90 (left), and 60 (right) degrees (sim-
ulated data with 94 diffusion-sensitizing gradients,b =
1200s/mm2, and SNR = 15). In these examples, we used the
multi-grid method to refine angle resolution beyond the orig-
inal 94 directions. Here, the final angle resolution is givenby
an icosahedral approximation of the sphere (642 directions).
Center: A sphere showing the directional color coding used
for the ODFs.Bottom: Recovered TOD of the same 2 sys-
tems.

the observed diffusion-weighted MR images. Moreover, it is
advantageous over other methodologies since displacement
probability function, orientation distribution function, and
principal fiber directions (or tensor orientation function) can
all be directly derived from TDF through simple analytic
relations.
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