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ABSTRACT More recently, High angular resolution diffusion imaging
Diffusion weighted MR imaging is a powerful tool that (HARDI) seeks to address this issue by sampling the g-space

can be employed to study white matter microstructure by’" sh_ells with fixed radu_. Methods such as the g-ball imaging
examing the 3D displacement profile of water moleculedchnique [3], the Persistent Angular Structure (PAS) tech
in brain tissue. By applying diffusion-sensitizing gradie  Nidue [4] and spherical-deconvolution techniques [5] ace p
along a minimum of 6 directions, second-order tensors can JaSed to recover partial information of the displacemeoibpr
computed to model dominant diffusion processes. Howeveﬁpnlty_functu_)n, wr_nle still permitting the inference ohder-
it has been shown that conventional DT is not sufficient tdYing fiber orientations to be made.
resolve crossing fiber tracts. More recently, High Angular !N this paper, we propose a new approach, the computa-
Resolution Diffusion Imaging (HARDI) seeks to address thislion Of the tensor distribution function (TDF), to addresefi
issue by employing more than 6 gradient directions. In thi€roSSing and non-Gaussianity in diffusion MR images. By us-
paper, we introduce the Tensor Distribution Function (TDF)INg Gaussian distributions as basis functions, we expaad th
a probability function defined on the space of symmetric and"known displacement probability function with the wetght
positive definite matrices. Here, fiber crossing is modeted adivén by the TDF. It can also be viewed as a natural and
an ensemble of Gaussian diffusion processes with weighf¥obabilistic extension of multi-compartmental model.thvi
specified by the TDF. Once this optimal TDF is determined(he computation of TDF, the water displacement probability
ODF can easily be computed by analytic integration of thdunction, orientation distribution function (ODF), temsari-
resulting displacement probability function. Moreoveinp ~ €ntation distribution (TOD), and its corresponding armispic
cipal fiber directions can also be directly derived from the{?ropertles can all be obtained through simple analytic-rela
TDE. lons.

1. INTRODUCTION 2. THEORY

In the past decade, diffusion magnetic resonance imagintj Standard diffusion weighted MRI, images are acquired
(MRI) has become a powerful tool in studying the structureiSing the Stejskal-Tanner pulsed gradient spin echo method
of fibrous materials. By applying diffusion sensitizing gira ~ Vith Some simplifications (rectangular pulse profiles), mea
ents, diffusion MRI characterizes particle diffusivityoite ~ SUréd image intensiteS are linked top, the displacement
in various tissues. When the duration of the applied diginsi ProPablity function of water molecules via the following
sensitizatiors is much smaller than the time between the twoFOUrier transform

ulses, the MR signal attenuation is related to the displace .
P : P S(@) = 5(0) [ plo)expia )iz M

ment probability function using a Fourier integral relatship
here the wavenumber= rdG, wherer, ¢, andG are the gy-

with respect to a wave vectQr1].
In brain imaging, diffusion MRI is particularly advanta- romagnetic ratio, the duration of the diffusion-senstia,

geous over conventional non diffgsion—weighted MRI dqe ©O4nd the applied magnetic gradient vector. Without loss of
its ab|I_|ty to_reveal the conflg_uratl_on and orientation ofefib generality, let us assume the constant S(0) is 1.
tracts in white matter. The Diffusion Tensor MRI (DT-MRI) ™ Aq5ming a simple Gaussian-diffusion one-tensor model,
proposed in [2] models water displacement probability funcyy, gisplacement probability function evaluated at posii
tion using a zero-mean Gaussian distribution whose Covart'given diffusion tensoD, and diffusion timet) is
ance matrix, a second-order positive symmetric tensos thu ’
represents the shape of local fiber tracts. Although extyeme

. . sy 1 ItDilx
powerful and easy to compute, DT-MRI is not without it's p(@) = ((4t)? det(D)) % exp ( _ ) @)
disadvantages. For example, any Gaussian probability-dist 4t
bution function has only one orientational mode, and thms ca  Thus, the measured diffusion MR image intensities in this
not resolve fiber crossing. one-tensor case is simp#j(q) = exp(—tq' Dq). Often times,




itis also useful to use the normalizatigr= ¢/|¢|, and the no- 2.2. Parametrizing Tensor SpaceD

tationb = t|qg|?. In this case, we havé(§) = exp(—bG'Dq). _ , _ _
The solution spacB® is a 6 dimensional space, and some re-

o . duction is necessary for numerical optimization purpo$es.
2.1. Tensor Distribution Function this end, we assume that two eigenvalues (out of three) are

Let us first denote the space of symmetric positive definit&dual for each individual tensor ia. With this assumption,
3-by-3 matrices a®. We seek an probablistic ensemble of We only need to specify, for each tensor, one unit direction
tensors, as reprented by a Tensor Disribution Fundiiafe-  ON the sphere which we associate with the third eigenvalue.
fined on the tensor spad® that best explains the observed Thus, each tensor is now represented by two scalars (spec-

diffusion-weighted images. In this case, the calculateatjen ifying 3 eigenvalues) and one unit direction, allowing us to
intensity is reduceD to a 4-dimentsional space. In other words, every

diffusion tensor D can be expressed usip@\, §), where the
eigenvalues\ = (A1, A2) (with X2 the repeated eigenvalue),
and® = (61,02) the azimuthal and polar angles associated
with A;. Notice that here we do not specify whether the
two equal eigenvalues are larger or lesser compared to the
To solve an optimal TDE*, we apply multiple diffusion-  third eigenvalue, thus allowing more types of tensors to be
sensitizing directiong;s, and arrive atP* using the least jncluded.
square principle Lastly, the unit direction associated with each tensor in
9 D is initially expanded and parameterized with respect to the
P* = argmin, Z (Sobs(Qi) — Scalculated(Qi)) (4) n diffusion-sensitizing gradient directiogss. The rationale
i behind this particular discretization is that the anguéssor
] ) o ) lution of computed fiber tracts should be linearly corredate
To simplify our derivations, let us define the error Vector, ith the number of diffuson-sensitzing gradients employed
E(¢i) = Sobs(di) = Scatculatea(q:) t0 b€ the contribution to\yhen acquiring HARDI. Once an initial solution is computed
the total error with respect ip. For P(D) to be atrue tensor ¢4, the tensor distribution function, we further refine tinge-
distrubtion fugn_tlon, we h.ave to enforce two contraints,,i. |5 resolution (beyond that given by the diffusion-semsity
the nonnegativtiy constrainf?(D) > 0 for everyD, and the gradient directions) by using a multi-resolution scheme.
probability density constraintf P(D)dD = 1.
To enforce the first constraint, we utilize the nonnega-
tivity property of the exponential function and I&(D) =  2.3. From TDF to ODF and Beyond
ex D)). The minimization problem as proposed above is
nol\j\glc%)[(atir)rzized in the associatpelﬂ space, tEuspensuring the ane the _optimal TDF i.s calculated, the displacement proba-
nonnegativity of the resulting TDF. To this end, the gratlien bilty functionp is simply:
descent in the? space for this minimization problem is thus:

Scalculated (q) = /

P(D)exp ( - tthq) dD  (3)
DeD

D 1z

dR p(z) = / P(D)((47t)* det(D))~ 7 exp (_ = )dD
- (D) =2 2B(¢;) exp(R(D))F(D,q;)  (5) Dep o
i Moreover, the ODF can be analytically computed by ra-
dial integration:

Here,r is an artificial ime, and”(D, ¢;) = exp (—tq!Dg;).
Let us now turn to address the second constraint. We first oo
rewrite this constraintin th& space:/;, . exp (R(D))dD = ODF (i) = C/ p(rz)dr
1, and modify the gradient direction in E@3) by gradient r=0
projection onto the constraint space. This gives us thevsl| 1
ing modified gradient descent =C P(D)(det(D)fcthli:) “dD (8)
DeD

dR Here C is a normalizing constant. Lastly, we determine
— (D) =) E(q)exp(R(D))F(D,q)+ Xexp(R(D))  dominant fiber directions by examing the peaks in the Ten-
dr
i 5 sor Orientation Distribution Function (TOD), the marginal
6) density function of TDF by integrating out the eigenvalues
where A= (A1 o)

exp(R(D)) 3.; E(q:) exp(R(D))F(D, gi)dD

A= — fDED
exp(R(D))2dD TOD(6) — / P(D(, 6))d) ©)
A

fDeD



Here, we note that computing TOD may be advantageousue fiber orientations. To help visualize the recovered GDF
when comparing our TDF approach to methods such as Qwo fiber bundles crossing at 90 degrees were simulated, us-
ball imaging, where determination of dominant fiber traet di ing similar parameter settings as above, ina 10 by 10 by 1 grid
rections is less straightforward. (Figure 2, top left), notice that the fiber crossing is vispal
clearly resolved. In this case, the mean angular separation
the two recovered tensors, as computed using the correspond
ing TOD’s, is 89.8 degrees with a standard deviation of 4.30
degrees.

3. RESULTS

In this section, we present experimental results to vadidat . ) ) .
the proposed TDF approach. Two diffusion-sensitizing To validate the TDF approach using real imaging data, the

gradient protocols are used. The first protocol utilizes 27#iffusion-weighted MR*lir:ages of a normal control subject
diffusion-sensitizing gradient directions, evenly disated ~Were acquired using (***paul, needs specifics for the real

on the hemisphere, and three baseline scans with no diff@iaa here). Two regions are used: region one covers crossing
sion sensitization (i.e., T2 images), while the secondgprot of corona radiata and corpus callosum; region two is obthine
col has 94 diffusion-sensitizing gradient directions, ard from the fanning of the arcuate fascicle. The results aressho

baseline scans with no gradient sensitization. To assess tif! Fig- 2. Notice thatin these cases, the recovered ODF plots

performance of the TDF approach, we first simulate variou&PP€ar consistent with known anatomical structures.
configurations of one-tensor systems using diffetevalues

and signal-to-noise ratios (SNR) (similar to those seee@ I Tap|e 1. Mean and standard deviation (in parenthesis) of the

HARDI data). In order to quantitatively compare the pro-iree performance measures for one tensor simulationtsesul

posed TDF approach to other methodologies in the literatur, i, varying SNRpb = 1200 /mm?

we compare the calculated ODF (from the computed TDF)sSNR T 10 15

anq the true ODF using L1 norm, L2 norm, and the Kullback- 'If'l- -70.2594((11-'176;15)) é’.gii(%ic.’se;‘%) -g%i? 4(‘(5-1?96';?%)

Leibler distance. Here, we chosg = 18 and )y, = 2 L2 .0032 (9.5e-5)  .0034 (3.5e-5)  .0035 (3.1e-5)

(10~ 1%m2s~1) as the eigenvalues for each individual tensor,

and employed Rician noise in our simulations. ODF is ren-Table 2. Mean of the three performance measures for one

dered using 642 points, as determined using an icosahedtgnsor simulation results with varyibgSNR = 15

approximation of the sphere. KT [0.002z 0002z 00021 0.0019 0100T8— G/00T4— 010013
Table 1 compares the mean and standard deviation of the-1 | 8.2e-4 82e-4 7.6e-4 7.6e-4 7.0e4 6.4e-4 57e4

three performance measures with a fixa@lue and different 0.0034  0.0034 0.0033 0.0032 0.0030 0.0027 0.0026

SNR's (10, 15, and 20) using the 27-direction protocol. Thergp|e 3, Estimated standard deviation of the three perfor-
results indicated that the TDF approach is robust, andas rel mance measures for one tensor simulation results with vary-
tively independent of the level of SNR. Moreover, the result ing b, SNR = 15

are comparable to those reported in [5]. In tables 2 and 3, web T000 1500 2000 2500 3000 3500 4000

i i i . RC [ I2e4 52e5 87e5 7865 79e5 22e4 1de4
investigated the influence bivalues on the performancemea- '+ | 987 287 2089 080 L28)  Eoes 3005
sures, and the results indicated that the TDF approach; simi 2 | 1.1e-4 35e-5 7.1e-5 7.0e-5 7.2e-5 2le-4 1.4e-d
lar to other methodologies, performs better with incregéin o

values (in this papeb ranges from 1000 to 4008mm?2). To ~ Table 4. Mean (and standard deviation) of the three perfor-
assess the performance in resolving fiber-crossing, we-simfance measures for two Qtensor simulation results with vary-
lated two-tensor systems with equal weights and varying arild anglesp = 1200s/mm=, SNR = 15

; e [ 45 50 90
gles of crossing (45, 60 and 90 degrees), and the corresponeRrS e 52— srrer 5 7rea T A 2Te4)

ing performances measures are shown in tables 4. Typicall 4.89e-4 (2.66e-5)  5.62e-4 (3.39e-5)  5.28e-4 (3.3%e-5)

examples of recovered ODF’s are shown in figure 1. L2 2.08e-2 (5.44e-3)  3.70e-3 (2.82e-4)  1.27e-2 (1.60e-3)
Similar simulations of fiber crossings were conducted us-

ing the 94-direction protocol. Interestingly, our resuitdi-

cate that the 27-direction protocol performs comparabiled¢o 4. CONCLUSION

94-direction protocol, indicating the numerical stalyitif the

TDF approach. In this paper, we introduced the computation of Tensor Dis-

In the next experiment, we investigate the concept of tentribution Function (TDF) as a novel methodology to resolve
sor orientation distribution function (TOD) by simulati®g intravoxel fiber crossing in HARDI. We presented math-
tensor systems with 90-degree crossing using the 94-direct ematical formulations of TDF, and proposed a projected
protocol (the two tensors aréd —°diag(18,2,2)m?s~tand  gradient descent algorithm for the numerical computation o
10~1%iag(2,18,2)m?s~t). Examples of computed TOD’s TDF. With minor constraints on the diffusion process and
are plotted at the bottom of Figure 1. Visually, we observehe anisotropy of individual tensors, the proposed apgroac
that the recovered TOD has two peaks corresponding to theolves for an underlying tensor ensemble that best describe



Fig. 2. Top Left: Recovered ODFs of a simulated 90 degrees
f fiber crossing with Rician noise (SNR = 15)op Right and
Bottom L eft: Recovered ODFs from real imaging daiBut-
tom Right: Positions of the windowed areas in the patient

Fig. 1. Top: Examples of typical recovered ODFs o
two-tensor system at 90 (left), and 60 (right) degrees (sim
ulated data with 94 diffusion-sensitizing gradients, = : ) )
1200s/mm?, and SNR = 15). In these examples, we used th@ram' Refer to text for more information

multi-grid method to refine angle resolution beyond the -orig

inal 94 directions. Here, the final angle resolution is gikgn  [4] J-Donald Tournier, Fernando Calamante, David Ga-
an icosahedral approximation of the sphere (642 directions  dian, and Alan Connelly. "Robust Determination of the
Center: A sphere showing the directional color coding used  Fiber Orientation Distribution in Diffusion MRI: Non-
for the ODFs.Bottom: Recovered TOD of the same 2 sys-  negativity Constrained Super-resolved Spherical Deconvo
tems. lution.” Neurolmages5s, p. 1459-1472, 2007.

- ) ) ~[5] David S. Tuch. "Q-Ball Imaging.”"Magnetic Resonance
the observed diffusion-weighted MR images. Moreover, itis iy pedicine52, p. 1358-1372, 2004.

advantageous over other methodologies since displacement
probability function, orientation distribution functiprand
principal fiber directions (or tensor orientation funcli@an

all be directly derived from TDF through simple analytic
relations.
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