Brain Network Analysis with Pluto

Micah Chambers Laboratory of Neuro Imaging

Graph Theory and the Brain

- Made up of Nodes and Edges
 - Node: Brain Region (e.g. V5) or Single Voxel
 - Edge: Direct Connection between Nodes (e.g. Corpus Callosal Fiber)
- Mathematical Formalization of Connectivity
- Allows researchers to characterize communication
 - "small world networks"
 - Random networks
- Look for subtle patterns
 - Not visible at a glance
 - vs. easily visible effects such as lesions
- Pluto Tools makes these fast and easy

Node Statistics

- Clustering Coefficient
 - Ratio of Realized vs.
 Potential Triangles
- Degree
 - Number of Edges
- Strength
 - Sum of Weights

Degree

3

Strength

Distance Metrics

- All Shortest Paths
- Edge Betweenness
 - Number of Shortests Paths
 Traversing the edge

Edge Betweenness

Distance Metrics

- Betweenness Centrality
 - Number of Shortest Paths Containing the Vertex
- Eccentricity
 - Length of the longest shortest path for a vertex
- Characteristic Path Length
 - Average Shortest Path
- Radius
 - Minimum of Eccentricity
- Diameter
 - Maximum of Eccentricity

0

Diameter: 3.5 Characteristc Path Length: 1.8

Distance Metrics

- Local Efficiency
 - Sum of Reciprocal Shortest
 Paths in subgraph
- Edge Range

Other Metrics

- Louvain Modularity
- Assortivity
 - Correlation of Degree
 Between Connected Vertices
- Matching Index

Louvain Modularity

High Assortivity

Matching Index

Low Assortivity

Pluto Tools Overview

- micor : timeseries similiarity
 - Calculates voxel-voxel mutual information or correlation
- gCalcAdj : Fiber Counts
 - Count between regions or mesh-points
- gRed : Resampling
 - calculate regional averages of connectivity
- gRed : Graph Theory
 - Calculate Metrics using Graph Theory

Functional Connectivity Calculation

- Required Input:
 - fMRI Image
 - Labelmap Image
 - Nearest N. Resampling Handled Internally
- Required Output:
 - Adjacency Matrix Stored in vtkImageData
- Lags: number of TR's to lag in search of maximal connectivity (2L+1)
- Metrics:
 - Correlation, "-c" (Recommended in Pipeline, < 1 hour runtime)
 - Mutual Information (Not Recommended in Pipeline, 10+ Hour runtime)
 - Mutual Information with Interpolation (Not Recommended in Pipeline, Day+ Runtime)
- Outside Pipeline: "-G" to use GPU

micor pluto		×
Name	Prefix	Value
🗹 fMRI Image	(none)	(1) NIFTI GZ (nii.gz)
🖌 Labelmap	(none)	(1) NIFTI GZ (nii.gz)
🗹 Output	-0	(1) vtk file (vtk)
Advanced Mutua	C	(0) File
🔽 Correlation	-с	(0) File
Threshold	-t	(1)Number
Number of Lags	-1	(1)Number
🗌 Don't Ignore No	-1	(0) File
Pre-Average Ea	-A	(0) File
VTK Text Output	-т	(0) File

Structural Connectivity Calculation

- Required Input:
 - Vertices Either:
 - Point List "-p"
 - Label Map Image "-L"
 - Input Data Either:
 - Existing Adj. Matrix "-a"
 - Fiber Tracts "-t"
- Filter out short tracts with "-m <length>"
 - Very short tracts are often considered noise

gCalcAd	ij	×
Name	Prefix	Value
🔽 Point List	-р	(1) File, csv file (csv
Labelmap	-L	(1) NIFTI GZ (nii.gz)
🔽 Tracts	-t	(1) vtk file (vtk)
Adjacency Matrix	-a	(1) vtk file (vtk)
🔽 Output Adjacen	(none)	(1) vtk file (vtk)
VTK Text	-Т	(0) File
🗌 Log File	-1	(1) File
Minimum Track	-m	(1)Number

Graph Modification

- Keep Only List of Nodes

 e.g. List of cortical Regions
- Remove List of Nodes
 - e.g. Ventricles
 - Extremely important when calculating shortest paths
- Graph Simplification:
 - Average Connectivity over Label-Pairs
 - Percentile over Label-Pairs
 - Optional Inclusion of Zeros in statistics

gRed		×
Name	Prefix	Value
Region-Paired	-a	(0) File
Region-Paired S	-s	(0) File
Keep Labels	-k	(1)String
🔽 Remove Labels	-r	0,1,2,4,5,6,7,8,14,
🗌 Include Zeros in	-z	(0) File
Region-Paired P	-р	(1)Number
🗹 Input Adjacenc	(none)	(1) vtk file (vtk)
🔽 Output Adjacen	(none)	(1) vtk file (vtk)
Normalize to Sel	-N	(0)
Save in ascii fo	-т	(0) File
Compute Statistic	-S	invert_elements

Graph Statistics "-S"

- Compute Statistic "-S":
 - Betweenness Centrality
 - Clustering Coefficient
 - Degree
 - Strength
 - Eccentricity
 - Local Efficiency
 - Shortest Path
 - Edge Range
 - Edge Betweeness
 - Matching Index
 - Joint Degree
 - Assortivity
 - Characteristic Path Length
 - Diameter
 - Radius
 - Global Efficiency
 - Louvain Modularity
 - Invert Elements (for converting weight to distance)

gRed pluto		×
Name	Prefix	Value
Region-Paired	-a	(0) File
Region-Paired S	-5	(0) File
Keep Labels	-k	(1)String
🔽 Remove Labels	-r	0,1,2,4,5,6,7,8,14,
Include Zeros in	-z	(0) File
Region-Paired P	-р	(1)Number
🗹 Input Adjacenc	(none)	(1) vtk file (vtk)
V Output Adjacen	(none)	(1) vtk file (vtk)
Normalize to Sel	-N	(0)
Save in ascii fo	-т	(0) File
Compute Statistic	-S	invert_elements

Odds and Ends

- gTxtToVtk
 - Input: CSV Adjacency Matrix
 - Output: vtkImageData
- gVtkToTxt
 - Input: vtkImageData
 - Output: CSV Adjacency Matrix
- trkToVtk
 - Input: trackvis .trk file
 - Output: vtkPolyLines

gTxtToVtk			
Name	Prefix	Value	
 ✓ Input Adj. ✓ Ouptut Adj. 	(none) (none)	(1) Text file (txt), c (1) vtk file (vtk)	
gVtkTo pluto Name	o Txt Pref <u>ix</u>	Xalue	
✓ Input Adj. ✓ Output Adj.	(none) (none)	(1) vtk file (vtk) (1) Text file (txt), c	
trkToVtk 🛛 🛛			
Name	Prefix	Value	
Output	(none) (none)	(1) tract (.trk) (1) vtk file (vtk)	

Conclusions

- Native C++ Code
 - Source Available for Request
 - Compiled Versions at /ifs/students/mchambers/pluto-0.5
- Pipelines Available Now
 - Make interfacing with other tools far easier
- GPU Support for functional connectivity (outside pipeline)
 - More may be added for slower graph-metrics
- Designed For Neuro Imaging Applications
 - Wide Variety of Input Image Types (nifti preferred)
 - Easily Convertible VTK format, tools included
- Please Contact Me at:
 - micahcc@ucla.edu
 - Come talk to me at the Ice Cream Social