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Objectives: To develop an automated imaging assessment tool that

accommodates the anatomic variability of the elderly and demented

population as well as the registration errors occurring during spatial

normalization. Methods: 20 subjects with Alzheimer’s disease (AD),

mild cognitive impairment, or normal cognition underwent MRI

brain imaging and had their 3D volumetric datasets manually

partitioned into 68 regions of interest (ROI) termed sub-volumes.

Gray matter (GM), white matter (WM), and cerebral spinal fluid

(CSF) voxel counts were then made in the subject’s native space for

comparison against automated volumetric measures within three sub-

volume probabilistic atlas (SVPA) models. The three SVPAs were

constructed using 12 parameter affine (12 p), 2nd order (2nd), and

6th order (6th) transforms derived from registering the manually

partitioned scans into a Talairach compatible AD population-based

target. The three SVPA automated measures were compared to the

manually derived measures in the 20 subjects’ native space with a

‘‘jack-knife’’ procedure in which each subject was assessed by an

SVPA they did not contribute toward constructing. Results: The

mean left and right GM ratio (GM ratio = [GM + CSF] / CSF) ‘‘r

values’’ for the 3 SVPAs compared to the manually derived ratios

across the 68 ROIs were 0.85 for the 12p SVPA, 0.88 for the 2nd

SVPA, and 0.89 for the 6th SVPA. The mean left and right WM ratio

(WM ratio = [WM + CSF] / CSF) ‘‘r values’’ for the 3 SVPAs being

0.84 for the 12p SVPA, 0.86 for the 2nd SVPA, and 0.88 for the 6th

SVPA. Conclusion: We have constructed, from an elderly and

demented cohort, an automated brain volumetric tool that has excel-

lent accuracy compared to a manual gold standard and is capable of
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regional hypothesis testing and individual patient assessment com-

pared to a population.
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Introduction

Neuroimaging in aging and dementia is now at a critical turning

point. The accumulation of findings since the first functional and

structural studies of dementia has produced sufficient observational

data to bring the field to the threshold of a new challenge—the

identification of incipient Alzheimer’s disease in the individual.

Results from past observational studies in patients, and elderly

normal subjects, enable us to test the prospective sensitivity and

specificity of a few discrete regional abnormalities in correctly

identifying incipient AD. Unfortunately, no single institution can

easily amass enough longitudinal population data to power the

analysis of an individuals’ likelihood of having incipient AD. The

urgency in meeting the challenge of identifying the individual, who

may not even have cognitive complaints, prior to developing

dementia symptoms is now apparent given our society’s changing

demographics and the emergence of disease modifying treatments.

Amajor impediment to meeting this challenge is the development of

an imaging assessment tool that can be universally applied and

possess sufficient power to identify an individual’s disease risk

compared to an unaffected population.

Four difficulties face the development of this imaging technique:

(1) the assessment tool must control for anatomic variability and

http://www.sciencedirect.com
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registration errors produced when comparing datasets in a common

co-ordinate system; (2) the tool must allow for regionally testable

hypotheses; (3) to ensure inter-center application, the imaging tool

must be automated, freely available, and not require extensive

computer resources; and (4) the tool should accommodate growth in

its population data. This study demonstrates a candidate imaging

assessment tool that addresses the above difficulties.
Methods

Overview

To determine the best registration algorithm to a common target

space (a population-based atlas designed to accommodate the

elderly and demented brain previously described) (Thompson et al.,

2001b), we test three polynomial registration approaches into our

atlas target using Automated Image Registration (AIR) (Woods et

al., 1998): 12 parameter affine (12 p), 30 parameter 2nd order warp

(2nd), or 168 parameter 6th order warp (6th) using 3 dimensional

magnetic resonance imaging (3D MRI) data from 20 subjects.

Regional native space tissue counts derived from manual outlines

served as the gold standard to determine the best overall accuracy of

automated gray matter (GM), white matter (WM), and cerebral

spinal fluid (CSF) voxel counts derived from the three transforms.

Here, we define a sub-volume as a region of interest (ROI) within

the target atlas; a probability gradient is the three-dimensional (3D)

probability distribution across atlas voxels of being within a given

ROI. Thus, some voxels in, for example, the thalamic sub-volume

of the atlas, will always contain thalamic tissue in any dataset

registered to the atlas, while other atlas thalamic voxels will have a

75%, 50%, 25%, (etc., . . .) chance of localizing the thalamus in a

scan registered to the atlas target. Regional sub-volume probability
Fig. 1. Volumertric ROIs are manually constructed with the aid of the 3D viewin

software package. This ensures that the outliner is able to accurately identify th

feedback from the surface model (major and minor sulci, outlined in red on the su

Note that the underlying white matter has no distinct landmarks to separate the var

example the coronal view, top right, where the ‘‘wheel’s hub’’ is at the dorsolate

initially created in the atlas space and then projected into each subject’s native spa

for manual refinement guided by each subjects unique cortical anatomy.
gradients produced within the atlas target space from the three

registration approaches are constructed by projecting the manual

outlines down the three registration matrices. Thus, three sub-

volume probabilistic atlas (SVPA) models are constructed for use as

automated tissue counters. The counts obtained with these three

SVPAs are then compared to the manual ‘‘gold standard’’ counts to

determine their best accuracy.

Subjects

The study group consisted of 20 individuals who presented to the

University of California Los Angeles Alzheimer’s Disease Research

Center, met all study criteria (below), and agreed to scanning after

signing an informed consent approved by the Human Subjects

Protection Committee. This study included 6 patients with moderate

Alzheimer’s Disease (AD) and 7 patients with mild disease, all

diagnosed according to National Institute of Neurological and

Communicative Disorders and Stroke/Alzheimer’s Disease and

Related Disorders Association (NINCDS/ADRDA) criteria for

probable AD (McKhann et al., 1984), 4 patients withMild Cognitive

Impairment (MCI) meeting criteria described by Petersen et al.

(1999), and 3 normal elderly subjects enrolled from a population of

patient caregivers. We chose a distribution of mild to moderate AD

patients, MCI, and controls to extend the application of the SVPA

across the population spectrum seen in most clinical research

settings. Inclusion criteria included no history of psychiatric disorder

in all subjects, or non-AD neurological illness in the AD patients,

being sufficiently proficient in English to perform clinical evaluation

and age 60 or greater. Exclusion criteria included: all individuals

with an abnormal structural imaging study of the brain including

cerebral vascular disease, a current or recent psychiatric illness (i.e.,

affective disorders, psychosis); significant, uncontrolled systemic

illness (i.e., chronic renal failure, chronic liver disease, poorly
g windows linked to the surface reconstruction available with the Display

e deep brain anatomy on the slice viewer by receiving visually registered

rface model, also can be texture-mapped to the slice windows on the right).

ious cortical ROIs, thus a ‘‘spokes-of-the-wheel’’ approach was used (see for

ral tip of the frontal horn of the lateral ventricle) to form a fixed geometry

ce via a 9-parameter transform which served as the beginning ROI template



Table 1

Regions constructed in the three sub-volume probabilistic atlases (SVPAs)

associated with their numerical labels shown in the graphs in Figs. 2 and 3

Region Label

Cerebellum 1

Occipital 2

Superior parietal 3

Inferior parietal 4

Posterior cingulate 5

Superior temporal 6

Middle temporal 7

Inferior temporal 8

Anterior parahippocampal 9

Hippocampus 10

Amygdala 11

Temporal pole 12

Posterior parahippocampal 13

Caudal anterior cingulate 14

Rostral anterior cingulate 15

Sub-callosal frontal 16

Medial orbital frontal 17

Lateral orbital frontal 18

Inferior frontal 19

Middle frontal 20

Superior frontal 21

Pre-central 22

Post-central 23

Insula 24

Ventricles 25

Substantia nigra 26

Midbrain 27

Pons 28

Medulla 29

Basal medial diencephalon 30

Thalamus 31

Nucleus accumbens 32

Lenticular nucleus 33

Caudate nucleus 34
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controlled diabetes hypertension or congestive heart failure); a

history of alcoholism or substance abuse within the past year.

Severity of the cognitive deficit was measured in all subjects using

theMiniMental State Exam (MMSE) (Folstein et al., 1975) revealed

an average score for the group of 23 (SD 5.39); moderate AD

patients scored between 15–19 with mild patient scoring between

20–25. There were a total of 9 females and 11 males, an average age

of 76.1 (SD 6.36), and average educational level of 15.6 (SD 2.75).

Scanning protocol

All scans were derived from a GE 1.5 T scanner with the

following protocol: coronal 3D volumetric spoiled gradient echo,

flip angle 25, TE = minimum FULL, TR = minimum, FOV = 22

cm � 16.5 cm, 124 slices at 1.6 mm/slice, matrix 256 � 192, phase

FOV (rectangular FOV), T10 kHz BW.

Image processing

All scans were transferred from archived digital sources in 16 bit

format and manually edited to remove the skull and scalp taking

particular caution to preserve the sulcal and subdural CSF. A binary

brain mask was then created from the manually edited file and used

in a radio frequency bias field correction algorithm using a

histogram spline sharpening method (Sled et al., 1998) to eliminate

intensity drifts attributable to scanner field inhomogeneity. After

inhomogeneity correction, a supervised tissue classifier generated

detailed maps of GM, WM, and CSF in the subjects’ native space.

Briefly, 120 samples of each tissue class were interactively tagged to

compute the parameters of a Gaussian mixture distribution that

reflects statistical variability in the intensity of each tissue type

(Zijdenbos and Dawant, 1994). A nearest neighbor tissue classifier

assigned each image voxel to a particular tissue class (GM, WM, or

CSF) or to a background class (representing extra-cerebral voxels in

the image). The inter-rater and intra-rater reliability of this protocol,

and its robustness to changes in image acquisition parameters, have

been described previously (Sowell et al., 1999). Gray and white

matter maps were retained for subsequent analysis. Native space,

skull-stripped, inhomogeneity corrected images were then registered

to the standard 3D stereotaxic atlas space (Thompson et al., 2001b)

using AIR (Woods et al., 1998) to produce three registration

matrices: 12 parameter affine (12 p), 30 parameter 2nd order warp

(2nd order), or 168 parameter 6th order warp (6th order) using the

standard deviation of ratio images as the cost function.

Regions of interest (ROI) construction

To aid manual ROI construction, a surface model of each

subject’s cortex was automatically extracted (MacDonald et al.,

2000) as previously described (Thompson et al., 2001a). A mesh-

like surface is deformed to fit the brain-CSF tissue intensity value of

each skull-stripped image volume. The cortical surface software was

modified to permit high-resolution extraction of both the lateral and

medial hemispheric surfaces, aiding ROI volumetric construction on

orthogonal image slices. The following landmarks were outlined on

each dataset: the Sylvian fissure; central, precentral, and postcentral

sulci; superior temporal sulcus (STS) main body, STS ascending and

posterior branches, and primary and secondary intermediate sulci;

inferior temporal, superior and inferior frontal, intraparietal, trans-

verse occipital, olfactory, occipitotemporal, collateral, callosal

sulcus, and inferior callosal border; the paracentral, anterior, and
posterior cingulate and the outer segment of double parallel cingulate

sulci (when present) (Ono et al., 1990); the superior and inferior

rostral, parieto-occipital, anterior and posterior calcarine, and

subparietal sulci. This protocol is available on the Internet (Hayashi

et al., 2002; Sowell et al., 2000) and has known inter-rater and intra-

rater reliability, as previously reported (Sowell et al., 2001).

In addition to contouring the major and minor sulci, a set of

six midline landmark curves bordering the longitudinal fissure

was outlined in each hemisphere to establish limits to aid dividing

the brain ROI into left and right. Spatially registered gray scale

image volumes in the three orthogonal coronal, axial, and sagittal

planes (available for simultaneous viewing with the 3D surface

model in the Display software package run on the McIntosh OS

X platform available at: http://www.bic.mni.mcgill.ca/software/

Display/Display.html) were manually segmented into 34 volu-

metric ROI for each subject’s left and right hemisphere (see Fig. 1

and Table 1). All surface and deep brain landmarks were defined

according to detailed anatomical protocols (Hayashi et al., 2002;

Leonard, 1996; Ono et al., 1990; Sowell et al., 2000, 2001;

Steinmetz et al., 1990) and atlasing methods (Amunts et al., 2000;

Chiavaras et al., 2001; Crespo-Facorro et al., 1999; Geyer et al.,

2000; Kim et al., 2000; Sastre-Janer et al., 1998; White et al.,

1997). Extension of the gyral ROI into the underlying WM was

accomplished by a ‘‘spokes-of-the wheel’’ technique (see Fig. 1)

 http:\\www.bic.mni.mcgill.ca\software\Display\Display.html 


Fig. 2. (A–C) Percent accuracy for the absolute gray matter (A), white matter (B), and cerebral spinal fluid (CSF) counts (C) across all sub-volumes constructed

using three different alignments to the population-based target atlas: 12 parameter affine, 2nd order warp, and 6th order warp (see Table 1 for the regions studied)
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Fig. 2 (continued).

Table 2

Mean left and right % accuracy for the absolute tissue counts and Pearson

correlation coefficients for the ratio measures across all 68 sub-volumes

across the 20 subjects for both the raw tissue counts and the counts

corrected for intracranial volume (ICV)

12p linear 2nd order 6th order

Raw

counts

ICV

corrected

Raw

counts

ICV

corrected

Raw

counts

ICV

corrected

Absolute WM 0.847 0.847 0.855 0.856 0.864 0.864

WM ratio 0.836 0.829 0.860 0.854 0.875 0.869

Absolute GM 0.862 0.863 0.865 0.866 0.864 0.865

GM ratio 0.852 0.845 0.877 0.872 0.886 0.881

Absolute CSF 0.759 0.758 0.772 0.772 0.771 0.771

Note. Absolute cerebral spinal fluid (CSF) counts were used for the

ventricles, and absolute gray matter (GM) counts were used for the

amygdala, hippocampus, thalamus, subtantia nigra, lenticular, accumbens,

and caudate nuclei in all the assessments above.
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with the geometry of its subcortical pattern defined in the atlas

target space and then projected down 9-parameter transforms into

each subject’s native space data. This was necessary to ensure a

similar geometry of white matter boundaries across the proba-

bility gradients since the subcortical white matter has no distinct

anatomical divisions. Once the underlying white matter geometry

of adjacent ROIs was defined in each subject’s native scans, the

manual editing process began tailoring ROIs to each subject’s

unique cortical anatomy. After all 68 left and right 3D ROI were

created, the GM, WM, and CSF tissue maps were used to

partition the ROI into their three tissue components. These

subdivided ROI where then projected down the 3 registration

matrices from subject’s native space to the atlas allowing

construction of the probability gradients for 12 p, 2nd order,

and 6th order SVPAs.

SVPA atlas construction and utilization

Following data co-registration and intensity normalization, as

described above, construction of the sub-volume probabilistic atlas

consisted of calculating the chance that each voxel within the

deterministic atlas-space belongs to any of the 34 ROIs. Together

with three different tissue types and two hemispheres for each ROI,

this constituted a total of 204 (34 � 3 � 2) sub-volumes of interest

(SVI). If P is the tissue type of subject n,

P vð Þ
n ¼

0; background
1;WM

2;GM
3;CSF

8>><
>>:
1 � n � 20, at voxel location v, 1 � v � 5,445,000 (=200 � 165 �
165),

I
vð Þ

S ¼ 1; va S

0; vu S

�

and I(v)ROIr, 1 � r � 34, is the indicator function of the rth ROI of the

SVPA, then Pn,r(v) = Pn(v) � I(v)ROIr represents the tissue type for

subject n, at location v, over the rth ROI. Then, the SVPA atlas was



Fig. 3. (A,B) Pearson correlation coefficients for the gray matter (A) and white matter (B) ratios controlling for the amount of CSF in each sub-volume

constructed (see text) using three different alignments to the population-based target atlas: 12 parameter affine, 2nd order warp, and 6th order warp. All

automated counts were compared against the ‘‘gold standard’’ native-space counts to produce ‘‘r values’’ across twenty subjects (see Table 1 for the regions

studied). Note: absolute CSF counts used for the ventricles in panels (A) and (B), absolute GM counts used for the hippocampus, amygdala, thalamus, subtantia

nigra, lenticular, accumbens, and caudate nuclei in panel (A).
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Fig. 4. (A,B,C) Probability gradients for gray matter voxels in medial

temporal structures constructed across different registration matrices of the

20 subjects into the atlas. (A) Amygdalar gradients derived from 6th order

warps (left) compared to 12 parameter registrations (right). (B and C)

Hippocampal gradients derived from 6th order warps (left) compared to 12

parameter (right) registrations.

Fig. 5. (A,B,C) Probability gradients for gray matter voxels in medial

temporal structures constructed across different registration matrices of the

20 subjects into the atlas. (A) Anterior parahippocampal gradients derived

from 6th order warps (left) compared to 2nd order warps (right). (B and C)

Posterior parahippocampal gradients derived from 2nd order warps

comparing the differential laterality effects in the population.
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constructed as a set of 204 volumes SVPA(k) each of which

contained the probability maps for one SVIk:

SVPA k; vð Þ ¼ 1

20
~20

n ¼ 1
I
vð Þ
fL n;vð Þ ¼ kg;

where L(n, v) = 102 � h + 34 � t + r � 1 is the numeric SVI label

associated with voxel v for subject n, h = 0, 1 (left/right

hemisphere), t = 0, 1, 2 (tissue type), and 1 � r � 34. An SVPA

value of 1 indicates that the chance this voxel is part of the kth SVI

is 100%, whereas a value close to 0 means the voxel is not likely to

belong to the kth SVI. This construction yields a 3D volume,

SVPA(k, v), for each region in which we count all selected tissue

type voxels that fall in the region of interest having 50% or higher

chance of belonging to the specified region. Another atlas

representation, useful primarily for visualization purposes, is

obtained by merging all probabilistic volumes encoding the 204

SVIs into a single 3D volume. This is achieved by subdividing the

intensity spectrum of short integers [0, 1, 2,. . ., 65535] into 204

sectors of equal size and placing the SVPA(k, v) probability maps

into the appropriate band. For a fixed voxel location vo, the intensity

of the single atlas volume is defined by

SVPA voð Þ ¼ ko � 1ð Þ ð65536Þ = 204ð Þ þ 20� SVPA ko;voð Þ;
where

ko = max
1�k�204

{20 � SVPA(k, vo)}.

In practical calculations, however, we used the raw SVPA atlas,

which consisted of 204 individual probability volumes, one for each

SVI. Since there is significant overlap between some regions, the

complete SVPA atlas must be stored as a 204 dimensional vector

field over the atlas voxel matrix or (as we did) as 204

individual probabilistic SVI volumes, SVPAk(v), 1 � k � 204.

The SVPA atlas may also be used to locate structures for any

subject automatically by co-registering the deterministic SVPA to a

subject’s native space brain volume (with global tissue maps) and

computing the voxel counts of each tissue type within each of the

204 SVIs in the SVPA atlas. The subject’s volume over SVIk is

computed (subject to a specified probability level, P) by Vk =

~v I
(v)
{P � R�SVPAk(v)}, where R�SVPAk(v) is the reslice of the kth

SVPA region into subject’s native space and P is a probability

level (P small/large yields a broad/conservative volumetric

measure, respectively). In the case of affine registration, one

often reslices the atlas volumes in the subject’s space. This requires

correction of the morphometric measurements by the magnitude of

the Jacobian of the affine spatial transformation. On the other hand,

when aligning the SVPA to subject space, special care is required
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during the reslicing step to avoid smoothing or altering the atlas SVI

label intensities as the latter are critical in volume calculations.

SVPA validation

Determining which of the three constructed SVPAs best

calculates tissue voxels, a comparison of automated versus manual

‘‘gold standard’’ ROI voxel counts was preformed using difference

measures with a cross-validation ‘‘jack-knife’’ analysis for the 20

subjects. The ‘‘jack-knife’’ procedure avoids the bias of using the

same subjects that made up the SVPA probability gradients in testing

the SVPA’s accuracy. Twenty unique SVPAs for each of the three

registration transforms were created with 19 subjects leaving out a

single subject whose volumes were assessed by that SVPA they did

not contribute toward constructing. Tissue counts corrected for each

subject’s intracranial volume (ICV) and absolute tissue counts (i.e.,

GM, WM, and CSF counts not corrected for ICV) were assessed

separately. Percent accuracy was computed using difference

measures of the automated versus manual voxel counts for the three

tissue types (GM, WM, and CSF) across all subjects’ sub-volumes

using the ‘‘jack-knife’’ constructed SVPAs. Since the automated

counts within an SVPA at times compute a larger, and other times, a

smaller voxel count than the manual method within native space, we

used the absolute value of these difference measures. Because a

difference of 100 voxels is more significant in a structure the size of

the thalamus than in the entire lateral ventricles, we divided the

absolute value of these differences by the total tissue volume found

in themanual measures (and subtracted this fraction from 1) to give a

‘‘percent accuracy’’ measure.

Guided from our previous experience with past SVPA

construction (Mega et al., 2000), we also evaluated two novel

measures: GM and WM ratios ([GM + CSF] / CSF = GM%, and

[WM + CSF] / CSF = WM%) for each sub-volume. Because any

given probability gradient can count all three tissue types of a

subject’s scan, these ratios measure reflect atrophy associated with

the increasing CSF component within a region. These GM and

WM ratios represent a new metric derived from the SVPA’s

probability gradients and thus are best evaluated with Pearson

correlation coefficients (Bland and Altman, 1986) when compared

against the deterministic manual ROI tissue ratios in native space.
Results

Figs. 2A,B,C demonstrate accuracy data for the ICV uncor-

rected (or absolute) tissue counts in the 3 SVPAs compared to the

‘‘gold standard’’ native space counts. Evaluation of the ICV

corrected counts showed no advantage over uncorrected counts

(see Table 2). Regional gradients constructed from higher order

warps often showed superiority to the gradients derived from the

linear registrations to the atlas.

Given that the probability gradients constructed from each sub-

volume can count all voxels from the GM, WM, and CSF that fall

within them in any given subject, the GM ratio and WM ratio

counts were also compared to the manually derived ratios (see

Figs. 3A,B). Absolute counts were used instead of ratio counts in

Figs. 3A,B however when the regions had primarily one tissue type

(absolute CSF counts used for the ventricles in A and B, absolute

GM counts used for the hippocampus, amygdala, thalamus,

subtantia nigra, lenticular, accumbens, and caudate nuclei in A).

The mean bilateral GM ratio correlation coefficients for the 3
SVPAs were 0.85 for the 12 p SVPA, 0.88 for the 2nd SVPA, and

0.89 for the 6th SVPA (calculated with the absolute GM and CSF

substitutions noted above). The mean bilateral WM ratio correla-

tion coefficients for the 3 SVPAs were 0.84 for the 12 p SVPA,

0.86 for the 2nd SVPA, and 0.88 for the 6th SVPA (calculated with

the absolute GM and CSF substitutions noted above).

Visual inspection of the probability gradients constructed from

the three different registration matrices reveals the population’s

anatomical variability and how that variability is controlled across

high and low polynomial registrations as shown for the medial

temporal regions in Figs. 4A,B,C. Right-sided variability of the

amygdala and hippocampus is controlled better with 6th order warps

compared to 12 parameter linear registrations (also see Fig. 3A for

‘‘r values’’ derived in the ratio counts from these regional gradients).

Given that the parahippocampal gyrus is an area of interest for

imaging in aging and dementia, its variability deserves attention

(see Figs. 5A,B,C). Although 6th order warping improved the GM

ratio over the 2nd order and 12 parameter registrations for the right

anterior parahippocampus, it did not do so on the left where 2nd

order warping was superior in both GM ratio and accuracy. In the

posterior parahippocampus, 2nd order warping was also superior in

GM accuracy measures bilaterally but not in GM ratio measures.
Discussion

We sought to develop an imaging assessment tool that achieved

the following goals: (1) The imaging tool must control for anatomic

variability and registration errors produced when comparing data-

sets in a common coordinate system. We chose a Talairach

compatible coordinate system constructed from a population most

similar to that found in clinics evaluating dementia patients as our

‘‘target atlas space’’ (Thompson et al., 2000a,b, 2001a,b). The

‘‘ideal’’ SVPA within this target space is somewhat regionally

dependent but in general the higher order 2nd and 6th SVPAs

outperformed the 12p SVPA in controlling anatomic variability and

registration errors. The increased processing time necessary for the

higher order warps (30min versus 5min when run on aG4 processor

on the McIntosh OS10.2 platform) might outweigh the 4%

improvement of the automated assessment tool (average r = 0.89

for 6th SVPA versus 0.85 for the 12p SVPA).

(2) The imaging tool must allow for regionally testable

hypotheses. This imaging tool allows for such diverse regionally

selected brain analysis given the 204 sub-volumes embedded in each

SVPA. (3) To ensure inter-center application, the imaging strategy

must be automated, freely available, and not require extensive

computer resources. We present here an automated imaging tool that

uses freely available software packages compiled on a G4 McIntosh

running OS10.2 (email the author for the terms of its use). The time

savings for an automated multi-regional assessment tool over

manual region delineation are enormous. The manual region

generation for the 20 datasets used to construct the probabilistic

atlas described here took over 3000 man-hours to generate.

Compared to the roughly 15 h of processing time and 1 h of

visualization of registration accuracy, this automated assessment

allows a profound time savings. (4) The imaging tool should

accommodate growth in its population data. Use of this tool will

provide regional tissue counts for an individual subject with the

standard deviation each count has within a larger population. This

population will increase in size as the number of subjects measured

by it increases. The population distribution data will be made



M.S. Mega et al. / NeuroImage 26 (2005) 1009–1018 1017
available to the users of this assessment method contingent upon

their sharing of their data with other users as is now the goal of the

AD Neuroimaging Initiative (ADNI). Only through open sharing of

similar assessment tools and longitudinal populations can sufficient

statistical power be achieved to evaluate individual patients against

the population. Thus, future studies using the ADNI database can

test the predictive power of this and other assessment tools in

identifying incipient AD within the elderly population.

Variability in the accuracy of the three registration techniques

in producing automated tissue volumes, compared to the manual

outlines, is driven by two main factors: (1) error in the intensity-

based registration algorithms and (2) the inherent variability in

brain morphology across a population. Where there is clear

intensity interfaces defining a structure’s boundary (CSF-GM

boundaries) as with the right amygdala, the higher order warp

better controls for the morphologic variability of the population

(see Fig. 4A) and thus improves accuracy. In parietal and frontal

cortices, 12p linear registration is often superior to the higher

order warps in GM accuracy measures (and in GM ratio measures

for the caudate and temporal pole) perhaps due to inappropriate

distortion of brain anatomy by the higher order warp, which AIR

has no control over, in a region of homogenous intensity. The

choice of which registration method to use should be driven by

the hierarchy of regions targeted by a given experiment’s

hypothesis, thus there is no best overall approach. For these,

relatively large ROI structure size does not influence volumetric

accuracy of the automated assessment method given the divergent

results among similarly sized smaller subcortical (e.g. medulla vs.

pons) and larger cortical regions (e.g. left sub-callosal frontal vs.

left caudal anterior cingulate) supporting the influence of

anatomic variability as a leading contributor of automated

volumetric inaccuracy. However, as voxel size becomes larger

relative to structure size, all methods using quantified grids

eventually break down and variances grow.

Some problems with this current study are that no information

on various pulse sequences is provided, thus multi-center data

employing different acquisition techniques from differing scanners

could produce accuracy results that deviate from those data

provided here. Another confound is that found in the potential

variation of the segmentation algorithms that may be employed by

different centers who choose to use this tool. The accuracy data we

describe here assume that the use of a specific segmentation

algorithm (Zijdenbos and Dawant, 1994) others employed may

change the tissue maps reflected in the regional probability

gradients. Future work on this assessment technique will aim to

evaluate the diagnostic utility of the ratio measures versus the

absolute voxel counts and to construct separate gradients for

functional imaging data and incorporate them into the sub-volume

thresholding (SVT) assessment (Dinov et al., 2000).
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